This is the pre-peer reviewed version of the following article: Q. Zhao et al., “Towards Air Stability of Ultra-Thin GaSe Devices: Avoiding Environmental and Laser-Induced Degradation by Encapsulation” Advanced Functional Materials (2018) https://doi.org/10.1002/adfm.201805304 Towards Air Stability of Ultra-Thin GaSe Devices: Avoiding Envi- ronmental and Laser-Induced Degradation by Encapsulation Qinghua Zhao1,2,3, Riccardo Frisenda4,*, Patricia Gant3, David Perez de Lara4, Carmen Munuera3, Mar Garcia-Hernandez3, Yue Niu4,5, Tao Wang1,2,*, Wanqi Jie1,2, Andres Castellanos-Gomez3,* 1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, 710072, P. R. China 2 Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology, Xi’an, 710072, P. R. China 3 Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, E-28049, Spain. 4 Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-nanociencia), Campus de Cantoblanco, E-28049 Madrid, Spain. 5 National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, China *E-mail:
[email protected] ,
[email protected] ,
[email protected] ABSTRACT: Gallium selenide (GaSe) is a novel two-dimensional material, which belongs to the layered III- VIA semiconductors family and attracted interest recently as it displays single-photon emitters at room tem- perature and strong optical non-linearity. Nonetheless, few-layer GaSe is not stable under ambient conditions and it tends to degrade over time. Here we combine atomic force microscopy, Raman spectroscopy and op- toelectronic measurements in photodetectors based on thin GaSe to study its long-term stability.