The Middle Jurassic Summerville Formation, Northern New Mexico--A

Total Page:16

File Type:pdf, Size:1020Kb

The Middle Jurassic Summerville Formation, Northern New Mexico--A TheMiddle Jurassic Summerville Formation, northern New Mexico -a rebuttalof Gondon,1993 by SpencerG. Luus,New Mexico Museum of NaturalHistory & Science,1801 Mountain Road NW, Albuquerque, NM87104; and 1rin J. Anderson,New Mexico Bureauof Minesand Mineral Resources. Socono. NM 87801 Introduction no way carefully defined as a stratigraphic unit, and Redwall Nothing new is presented in Condon's reply (Condon, 7993) Limestone, introduced by Gilbert (1875)but not named for a ge- to our paper on the Summerville Formation and related strata in ographic location, would have to be considered invalid using northern New Mexico (Anderson and Lucas, 1992). Condon re- Condon's criteria. sorted to trivializing our objection to using preoccupied strati- Condon failsto understandthat long-usedand widely accepted graphic names, calling it specious, and also to searching the stratigraphic names, such as Grabau's term Wanakah, are valid stratigraphic code (NACSN, 1983) for loopholes in order to justify and take priority over later usageseven if the original definitions perpetuating his confusing duplication of names. Clearly usage do not meet current or (what Condon imagines to be) earlier of the name Wanakah as a stratigraphic unit in New York has standards. Failure to understand and implement this basic con- precedence over usage in southwest Colorado. Significantly, Con- cept is a recipe for nomenclatural chaos.Condon's claim that "the don did not choose to defend regional correlations proposed by Wanakah of the eastem Colorado Plateauhas been the subject of workers at the U.S. Geological Survey based on the "Bed at Black much more study than the New York unit" can only mean that Steer Knoll." We interpret this as an admission that regional cor- he is unaware of extensive geological and paleontological litera- relations based on the "Bed at Black Steer Knoll" are unsupport- ture on the New York Wanakah. able. Generally, arguments set forth by Condon only strengthen our The "Beclabito Member of the Wanakah" is correlative with conclusion that the last 25 years of effort bv workers of the U.S. the Summerville Geological Survey to revisi Middle and Lipper Jurassic stratig- At the heart of our disagreementwith Condon and his col- raphy and sedimentation models on the Colorado Plateau have leagues is the correlation of San Rafael Group units on the Col- been based (1) on continued use or creation of redundant and orado Plateau from west-central New Mexico to southwestern parochial stratigraphic names, (2) purported tracing of marker Coloradoto east-centralUtah. The correlationwe proposeis sup- beds that cannot be traced by other investigators in the field, (3) ported by all availablelitho- and biostratigraphy and is advocated postulating regional unconformities for which no stratigraphic or by most workers, including Harshbargeret al. (1957),Imlay(1980), geochronologic evidence exists and using these "unconformities" Kocurekand Dott (1983),and Ridgley(1989), among others.This as formation contacts, and (4) creating sedimentological models correlation (Fig. 1a) recognizesthe main body of the Entrada to which stratigraphic units are retrofitted regardlessbf the actual Sandstone across the Colorado Plateau. The overlying Todilto stratigraphic relationships. Formation in northern New Mexico/southwesternColorado rep- resentsa salinalake (Lucaset al., 1985)or a marine embayment Preoccupied stratigraphic names should not be used (Harshbargeretal.,1,957; Ridgley, 1989) related to a risein regional We pointed out that the term "Wanakah Shales," introduced base level due to the transgressionof the CurtirStump (early- by Grabau (1977) for Devonian strata in New York, has priority middle Callovian) seaway.The SundanceFormation of South Da- over Burbank's (1930) "Wanakah Member of the Morristrn Foi- kota-Wyoming was also deposited during this transgression;the mation." Indeed, the Middle Devonian Wanakah Member of the ichthyofauna of the Todilto Formation is also found in the Sund- Ludlowville Formation (the Hamilton Group) is a well recognized anceFormation, lending further support to the correlation(Schaeffer stratigraphic unit used in many publications, including the Ge- and Patterson, 1984). ologic Map of New York published by the New York State Mu- The Summerville Formation of our usage overlies the Todilto seum of Science/New York Geological Survey (Rickard and Fisher, Formation or, where the Todilto is absent, the main body of the 7970a, b) and more recently by Miller (1991) in a discussion of Entrada Sandstonefrom Cimarron County in western Oklahoma Devonian stratigraphy. Grabau (1917,p.338) introduced the name to near Moab in east-centralUtah. West of Moab, to the SanRafael in a footnote to refer to an already well known unit, "the lower Swell, however, the Summerville overlies the shallow-marine Curtis Hamilton Shales" of western New York. Cooper (1930, p. 225) Formation which, not surprisingly, occupies the same strati- subsequently designated and described a type section foi what graphic position as the Todilto Formation. Regional stratigraphic he termed the Wanakah Member of the Ludlowville Formation relationships, fossils, and lithology thus support the correlation of the Hamilton Group. This unit is listed and described in the advocated by most workers between west-central New Mexico most recent U. S. Geological Survey Lexicon of Geologic Names and the San Rafael Swell of Utah: Entrada : Entrada, Todilto : (Keroher, 1955) and has never been recommended foiabandon- Curtis, and Summerville : Summerville, with the recognition merrt by the original author nor the U. S. Geological Survey. that part of the upper Curtis may grade eastwardor southeast- Condon challenges the idea that Grabau's use of Wanakah has ward into lower Summerville strata (Fig. 1a). priority over Burbank's on the ground that Grabau's introduction Condon and his colleagues (especially O'Sullivan, 1,980a,b), of the name Wanakah Shales did not constitute "an adequate however, propose a very different correlation (Fig. 1b). They claim definition of a new stratigraphic name . in 7917." Obviously, that careful tracing of key marker beds shows the "Wanakah For- Condon is alone in this belief, since all stratigraphers who have mation" of southwestern Colorado (and west-central New Mex- worked in western New York, and geologisti o] the New york ico) to be older than the Summerville Formation of east-central Geological Survey, have recognized Grabau's Wanakah Shales as Utah. According to Condon, the Wanakah is correlative with the a valid stratigraphic, unit. Fven Burbank (1930) acknowledged Curtis. This apparently indicates to him that the Todilto is older Grabau's priority, although he thought no confusion would aiise than the Curtis and that the Entrada Sandstone of west-central from giving the same name to two geographically disparate units. New Mexico is older than the Entrada of Utah (Fig. 1b). Ironically, Much confusion would arise if the criteria demanded bv Con- it was Condon's predecessors(Baker et al., 1947)who correlated don were applied to many of the stratigraphic names introduced the Entrada Sandstoneinto the southern San Juan Basin. in the 1800s and early 1900s. Well understood and widely used In our original article we refuted the Wanakah-Curtis corre- names such as Shinarump, casually used by Powell (1876lbut in lation by pointing out that the so-called"marker bed"-"Bed at August 1993 Nan Merico Geology SanRafael Swell, Utah SanJuan Basin, New Mexico Condon reasserts the erroneous correlation (locally) of the "Bed BrushyBasir at Black Steer Knoll" of O'sullivan (1980b)and refers to O'sullivan Morrison Member MorrisonFormation and Pierce (1983) to argue that strata, which McKnight labelled Formation owermembers Zuni Sandstone Summerville (and which lie above the Moab Tongue of the En- BluftSandstone cross SummervilleFormation trada Sandstone on the southwestern end of McKnight's This is an assertion for which Con- Formation section), are not Summerville. A Summerville don presents no evidence. Furthermore, Condon's statement that CurtisFormation of Moab, which we termed Summerville, "consist TodiltoFormation rocks southeast of Entrada, Curtis, and Summerville equivalents and therefore EntradaSandstone EntradaSandstone cannot be called Summerville" runs contrary to established strat- igraphic practice. These rocks are lithologically similar to, and continuous with, Summerville strata and should be mapped as Summerville Formation even if they include strata correlative with the Curtis Formation. SanRafael Swell, Utah SanJuan Basin, New Mexico The rather superficial reasons for the Summerville-to-Wanakah name change are discussed by Condon and Peterson (1986, p. MorrisonFormation MorrisonFormation 15). In addition, a written communication from Condon to An- derson (February, 1986) states "Had O'Sullivan's revised inter- pretation been known to me earlier, I wouldn't have gone ahead SummervilleFormation CowSprings Sandstone with the name change in the San Juan Basin." The "revisions" B HorseMesa Member alluded to by Condon are those of O'Sullivan in which he ac- CurtisFormation Er knowledged that the Summerville was not cut out entirely by pre- Beclabito*Member four-corners area. The "name change," 6L Morrison erosion in the >c refers to the change from Summerville to Wanakah. A Entrada TodiltoMember of course, Sandstone subsequent written communication from Condon to Anderson 'Although (February, 1988) includes the following: the interpre- EntradaSandstone tation now
Recommended publications
  • The Summerville Formation: Evidence for a Sub-Horizontal Stratigraphic Sequence Below the Post-Rift Nu Conformity in the Middleton Place Summerville Seismic Zone
    University of South Carolina Scholar Commons Theses and Dissertations 2017 The ummeS rville Formation: Evidence for a Sub- Horizontal Stratigraphic Sequence below the Post- Rift nconforU mity in the Middleton Place Summerville Seismic Zone Joseph Edward Getz University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Geology Commons Recommended Citation Getz, J. E.(2017). The Summerville Formation: Evidence for a Sub-Horizontal Stratigraphic Sequence below the Post-Rift nU conformity in the Middleton Place Summerville Seismic Zone. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/4177 This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. THE SUMMERVILLE FORMATION: EVIDENCE FOR A SUB- HORIZONTAL STRATIGRAPHIC SEQUENCE BELOW THE POST-RIFT UNCONFORMITY IN THE MIDDLETON PLACE SUMMERVILLE SEISMIC ZONE By Joseph Edward Getz Bachelor of Arts University of South Carolina, 2013 Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Geological Sciences College of Arts and Sciences University of South Carolina 2017 Accepted by: James H. Knapp, Director of Thesis Camelia C. Knapp, Reader Andrew Leier, Reader Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright by Joseph Edward Getz, 2017 All Rights Reserved. ii DEDICATION I would like to dedicate this to my grandparents and my mother, for without their support none of this would have been possible. iii ACKNOWLEDGEMENTS I would like to give a special thanks my major advisor, Dr.
    [Show full text]
  • Stromatolites in the Todilto Formation? Dana S
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/56 Stromatolites in the Todilto Formation? Dana S. Ulmer-Scholle, 2005, pp. 380-388 in: Geology of the Chama Basin, Lucas, Spencer G.; Zeigler, Kate E.; Lueth, Virgil W.; Owen, Donald E.; [eds.], New Mexico Geological Society 56th Annual Fall Field Conference Guidebook, 456 p. This is one of many related papers that were included in the 2005 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Geology and Stratigraphy Column
    Capitol Reef National Park National Park Service U.S. Department of the Interior Geology “Geology knows no such word as forever.” —Wallace Stegner Capitol Reef National Park’s geologic story reveals a nearly complete set of Mesozoic-era sedimentary layers. For 200 million years, rock layers formed at or near sea level. About 75-35 million years ago tectonic forces uplifted them, forming the Waterpocket Fold. Forces of erosion have been sculpting this spectacular landscape ever since. Deposition If you could travel in time and visit Capitol Visiting Capitol Reef 180 million years ago, Reef 245 million years ago, you would not when the Navajo Sandstone was deposited, recognize the landscape. Imagine a coastal you would have been surrounded by a giant park, with beaches and tidal flats; the water sand sea, the largest in Earth’s history. In this moves in and out gently, shaping ripple marks hot, dry climate, wind blew over sand dunes, in the wet sand. This is the environment creating large, sweeping crossbeds now in which the sediments of the Moenkopi preserved in the sandstone of Capitol Dome Formation were deposited. and Fern’s Nipple. Now jump ahead 20 million years, to 225 All the sedimentary rock layers were laid million years ago. The tidal flats are gone and down at or near sea level. Younger layers were the climate supports a tropical jungle, filled deposited on top of older layers. The Moenkopi with swamps, primitive trees, and giant ferns. is the oldest layer visible from the visitor center, The water is stagnant and a humid breeze with the younger Chinle Formation above it.
    [Show full text]
  • Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
    New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart.
    [Show full text]
  • Mesozoic Stratigraphy at Durango, Colorado
    160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs.
    [Show full text]
  • Sequence Stratigraphy, Diagenesis, and Depositional Facies of an Exposed Megaflap: Pennsylvanian Hermosa Group, Gypsum Valley Salt Wall, Paradox Basin, Colorado
    SEQUENCE STRATIGRAPHY, DIAGENESIS, AND DEPOSITIONAL FACIES OF AN EXPOSED MEGAFLAP: PENNSYLVANIAN HERMOSA GROUP, GYPSUM VALLEY SALT WALL, PARADOX BASIN, COLORADO KYLE THOMAS DEATRICK Master’s Program in Geological Sciences APPROVED: Katherine A. Giles, Ph.D., Chair Richard P. Langford, Ph.D. Gary L. Gianniny, Ph.D. Stephen Crites, Ph. D. Dean of the Graduate School Copyright © by Kyle Thomas Deatrick 2019 Dedication I wish to dedicate this work to my family and friends, especially my parents Julie and Dennis Deatrick for their unwavering support and encouragement. SEQUENCE STRATIGRAPHY, DIAGENESIS, AND DEPOSITIONAL FACIES OF AN EXPOSED MEGAFLAP: PENNSYLVANIAN HERMOSA GROUP, GYPSUM VALLEY SALT WALL, PARADOX BASIN, COLORADO by KYLE THOMAS DEATRICK, B.S. Geology THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Geological Sciences THE UNIVERSITY OF TEXAS AT EL PASO December 2019 ProQuest Number:27671333 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 27671333 Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author. All Rights Reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Acknowledgements I wish to thank my committee members whose time and support provided tremendous input into my research.
    [Show full text]
  • Oil and Gas Plays Ute Moutnain Ute Reservation, Colorado and New Mexico
    Ute Mountain Ute Indian Reservation Cortez R18W Karle Key Xu R17W T General Setting Mine Xu Xcu 36 Can y on N Xcu McElmo WIND RIVER 32 INDIAN MABEL The Ute Mountain Ute Reservation is located in the northwest RESERVATION MOUNTAIN FT HALL IND RES Little Moude Mine Xcu T N ern portion of New Mexico and the southwestern corner of Colorado UTE PEAK 35 N R16W (Fig. UM-1). The reservation consists of 553,008 acres in Montezu BLACK 666 T W Y O M I N G MOUNTAIN 35 R20W SLEEPING UTE MOUNTAIN N ma and La Plata Counties, Colorado, and San Juan County, New R19W Coche T Mexico. All of these lands belong to the tribe but are held in trust by NORTHWESTERN 34 SHOSHONI HERMANO the U.S. Government. Individually owned lands, or allotments, are IND RES Desert Canyon PEAK N MESA VERDE R14W NATIONAL GREAT SALT LAKE W Marble SENTINEL located at Allen Canyon and White Mesa, San Juan County, Utah, Wash Towaoc PARK PEAK T and cover 8,499 acres. Tribal lands held in trust within this area cov Towaoc River M E S A 33 1/2 N er 3,597 acres. An additional forty acres are defined as U.S. Govern THE MOUND R15W SKULL VALLEY ment lands in San Juan County, Utah, and are utilized for school pur TEXAS PACIFIC 6-INCH OIL PIPELINE IND RES UNITAH AND OURAY INDIAN RESERVATION Navajo poses. W Ramona GOSHUTE 789 The Allen Canyon allotments are located twelve miles west of IND RES T UTAH 33 Blanding, Utah, and adjacent to the Manti-La Sal National Forest.
    [Show full text]
  • Summary of the Geology and Resources of Uranium in the San Juan Basin and Adjacent Region
    u~c..~ OFR :J8- 'JtgLJ all''1 I. i \ "' ! .SUHMARY OF THE GEOLOGY .ANp RESOURCES OF ,URANIUM IN THE SAN JUAN BASIN AND ADJACENT 'REGION, NEW MEXICO, ARIZONA, UTAH & COLORADO I , J.L. Ridgley, et. al. 1978 US. 6EOL~ SURVEY ~RD, US'RARY 505 MARQU51"1"5 NW, RM 72e I .1\LB'U·QuERQ~, N.M. 87'102 i I UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY SUMMARY OF THE GEOLOGY AND RESOURCES OF URANIUM IN THE SAN JUAN BASIN AND ADJACENT REGION, NEW MEXICO, A~IZONA, UTAH, AND COLORADO 'V'R.0 t ~.-4~ . GICAL SURVEY p.· ..... P• 0 . .:.;J .. _. ·5 ALBU~U~~QUE, N. By Jennie L. Ridgley, Morris W. Green, Charles T. Pierson, • Warren I. Finch, and Robert D. Lupe Open-file Report 78-964 1978 Contents • Page Abstract Introduction 3 General geologic setting 3 Stratigraphy and depositional environments 4 Rocks of Precambrian age 5 .. Rocks of Cambrian age 5 < 'I Ignacio Quartzite 6 Rocks of Devonian age 6... i Aneth Formation 6 Elbert Formation 7 Ouray Limestone 7 Rocks of Mississippian age 8 Redwall Limestone 8 Leadville Limestone 8 Kelly Limestone 9 Arroyo Penasco Group 10 Log Springs Formation 10 Rocks of Pennsylvanian age 11 Molas Formation 11 ~ermosa Formation 12 .' . Ric9 Formation'· 13 .. •;,. Sandia Fotfuatto~ 13 Madera Limestone 14 Unnamed Pennsylvanian rocks 15 • ii • Rocks of Permian age 15 Bursum Formation 16 Abo Formation 16 Cutler Formation 17. Yeso Formation 18 Glorieta Sandstone 19 San Andres Limestone 19 Rocks of Triassic age 20 Moenkopi(?) Formation 21 Chinle Formation 21 Shinarump Member 21 Monitor Butte Member 22 Petrified Forest
    [Show full text]
  • Paleontology of the Bears Ears National Monument
    Paleontology of Bears Ears National Monument (Utah, USA): history of exploration, study, and designation 1,2 3 4 5 Jessica Uglesich ,​ Robert J. Gay *,​ M. Allison Stegner ,​ Adam K. Huttenlocker ,​ Randall B. ​ ​ ​ ​ Irmis6 ​ 1 Friends​ of Cedar Mesa, Bluff, Utah 84512 U.S.A. 2 University​ of Texas at San Antonio, Department of Geosciences, San Antonio, Texas 78249 U.S.A. 3 Colorado​ Canyons Association, Grand Junction, Colorado 81501 U.S.A. 4 Department​ of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706 U.S.A. 5 University​ of Southern California, Los Angeles, California 90007 U.S.A. 6 Natural​ History Museum of Utah and Department of Geology & Geophysics, University of Utah, 301 Wakara Way, Salt Lake City, Utah 84108-1214 U.S.A. *Corresponding author: [email protected] or [email protected] ​ ​ ​ Submitted September 2018 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3442v2 | CC BY 4.0 Open Access | rec: 23 Sep 2018, publ: 23 Sep 2018 ABSTRACT Bears Ears National Monument (BENM) is a new, landscape-scale national monument jointly administered by the Bureau of Land Management and the Forest Service in southeastern Utah as part of the National Conservation Lands system. As initially designated in 2016, BENM encompassed 1.3 million acres of land with exceptionally fossiliferous rock units. Subsequently, in December 2017, presidential action reduced BENM to two smaller management units (Indian Creek and Shash Jáá). Although the paleontological resources of BENM are extensive and abundant, they have historically been under-studied. Here, we summarize prior paleontological work within the original BENM boundaries in order to provide a complete picture of the paleontological resources, and synthesize the data which were used to support paleontological resource protection.
    [Show full text]
  • Middle Jurassic Landscape Evolution of Southwest Laurentia Using Detrital Zircon Geochronology
    RESEARCH Middle Jurassic landscape evolution of southwest Laurentia using detrital zircon geochronology Sally L. Potter-McIntyre1, Marisa Boraas2, Keegan DePriest2, and Andres Aslan2 1DEPARTMENT OF GEOLOGY, SOUTHERN ILLINOIS UNIVERSITY, PARKINSON LABORATORY, MAIL CODE 4324, CARBONDALE, ILLINOIS 62902, USA 2PHYSICAL AND ENVIRONMENTAL SCIENCES, COLORADO MESA UNIVERSITY, 1100 NORTH AVENUE, GRAND JUNCTION, COLORADO 81501, USA ABSTRACT The Middle Jurassic Wanakah Formation in western Colorado is a poorly understood unit in terms of depositional environment and abso- lute age of deposition; however, a refined interpretation of the provenance has important implications for understanding the landscape evolution of southwestern Laurentia during Mesozoic rifting of the supercontinent Pangea and the opening of the Gulf of Mexico. This study presents the first U/Pb age dating of detrital zircons from the Middle to Late Jurassic Entrada Sandstone, Wanakah Formation, and Tidwell and Salt Wash Members of the Morrison Formation. Detrital zircon geochronology results show a marked increase in ca. 523 Ma grains (compared to most Mesozoic sediments on the Colorado Plateau) that begins abruptly in the Wanakah Formation and continues into the basal Marker Bed A of the Tidwell Member of the Morrison Formation. U/Pb ages and petrography suggest that the Wanakah Formation was sourced, in large part, from the McClure Mountain syenite on the southwestern flank of the Ancestral Front Range. This abrupt change in provenance occurred due to stream capture and drainage reorganization that input a large amount of water into the basin and caused a shift in depositional environment from the eolian Entrada Sandstone to the hypersaline lake environments of the Wanakah Formation and the Tidwell Member.
    [Show full text]
  • An Inventory of Non-Avian Dinosaurs from National Park Service Areas
    Lucas, S.G. and Sullivan, R.M., eds., 2018, Fossil Record 6. New Mexico Museum of Natural History and Science Bulletin 79. 703 AN INVENTORY OF NON-AVIAN DINOSAURS FROM NATIONAL PARK SERVICE AREAS JUSTIN S. TWEET1 and VINCENT L. SANTUCCI2 1National Park Service, 9149 79th Street S., Cottage Grove, MN 55016 -email: [email protected]; 2National Park Service, Geologic Resources Division, 1849 “C” Street, NW, Washington, D.C. 20240 -email: [email protected] Abstract—Dinosaurs have captured the interest and imagination of the general public, particularly children, around the world. Paleontological resource inventories within units of the National Park Service have revealed that body and trace fossils of non-avian dinosaurs have been documented in at least 21 National Park Service areas. In addition there are two historically associated occurrences, one equivocal occurrence, two NPS areas with dinosaur tracks in building stone, and one case where fossils have been found immediately outside of a monument’s boundaries. To date, body fossils of non- avian dinosaurs are documented at 14 NPS areas, may also be present at another, and are historically associated with two other parks. Dinosaur trace fossils have been documented at 17 NPS areas and are visible in building stone at two parks. Most records of NPS dinosaur fossils come from park units on the Colorado Plateau, where body fossils have been found in Upper Jurassic and Lower Cretaceous rocks at many locations, and trace fossils are widely distributed in Upper Triassic and Jurassic rocks. Two NPS units are particularly noted for their dinosaur fossils: Dinosaur National Monument (Upper Triassic through Lower Cretaceous) and Big Bend National Park (Upper Cretaceous).
    [Show full text]
  • Jurassic Tetrapod Footprint Ichnofaunas and Ichnofacies of the Western Interior, USA
    Volumina Jurassica, 2014, Xii (2): 133–150 Doi: 10.5604/17313708 .1130134 Jurassic tetrapod footprint ichnofaunas and ichnofacies of the Western Interior, USA Martin LOCKLEY1, Gerard GIERLINSKI2 Key words: Jurassic, footprints, ichnofacies, dinosaurs, pterosaurs, Western Interior. Abstract. The Jurassic tetrapod track record of the Western Interior, USA, is one of the most diverse, complete and well-studied in the world, spanning a relatively continuous representation of Lower, Middle and Upper Jurassic formations. Although a few of these forma- tions, notably the Morrison Formation, have yielded abundant body fossils, the majority lack abundant skeletal remains and, while track- rich, are in some cases completely barren of body fossils. Thus, the track record assumes great importance as the most complete and repre- sentative record of changing tetrapod faunas through time in a region where the body fossil record is often sparse or absent. In the Lower and Middle Jurassic, many distinctive assemblages are associated with eolian units (Wingate, Navajo and Entrada) that are almost devoid of body fossils. However, the former two units are rich in synapsid tracks characterized as the Brasilichnium ichnofacies. In the Middle Jurassic, fluctuating sea-levels exerted important controls on the distribution of theropod and pterosaur-dominated ichnofaunas associated with coastal plain and marginal marine settings. The Morrison ichnofauna is a reliable reflection of the body fossil record of that formation. Ongoing efforts to group and classify the various tetrapod ichnofaunas into tetrapod ichnofacies and tetrapod biochron categories have, in some cases, provoked stimulating, if sometimes inconclusive, debate. INTRODUCTION widespread evidence of life in the various eolian and mar- ginal marine paleoenvironments that prevailed throughout The Jurassic of the Western Interior of the USA is histori- much of the Early and Middle Jurassic.
    [Show full text]