Performance and Evaluation of Lisp Systems

Total Page:16

File Type:pdf, Size:1020Kb

Performance and Evaluation of Lisp Systems Performance and Evaluation of Lisp Systems Richard P. Gabriel Originally Published by The MIT Press in their Computer Systems Series (ISBN 0-262-07093-6) Preface The distance is commonly very great between actual performances and speculative possibility, It is natural to suppose that as much as has been done today may be done tomorrow: but on the morrow some difficulty emerges, or some external impediment obstructs. Indolence, interrup- tion, business, and pleasure, all take their turns of retardation; and every long work is lengthened by a thousand causes that can, and ten thousand that cannot, be recounted. Perhaps no extensive and multifarious per- formance was ever effected within the term originally fixed in the under- taker’s mind. He that runs against Time has an antagonist not subject to casualties. Samuel Johnson (Gibbon’s Miscellaneous Works) When I ran across this quote, I was at first jubilant to have found something profound about performance written by Samuel Johnson which I could use as a centerpiece for the preface to this book. But as I read I saw that he was talking much too specifically about human performance to be an appropriate general statement about performance—a statement that could be applied to the performance of a computer program. It took me a few days to see that the point Johnson made addressed the very center of what should be learned about the performance of Lisp systems by anyone who cares to study the material I’ve presented in this book. That point is that people work very hard to attain every microsecond of speed that a computer demonstrates, and there are two major problems facing an implementor when he embarks on producing a Lisp system: the first problem is the myriad of decisions to be made, the interactions of various parts of the Lisp system when they are brought together, the unfortunate choice in one aspect of the system turing around and influencing, badly, the performance of another; the second problem is that writing a Lisp system is a monumental undertaking, and this undertaking is executed within the context of living a life as well. And, although an implementor might start out with large goals and spectacular intentions, the time it takes to do the thorough job required to produce an excellent Lisp system will bring many obstacles and intrusions, impediments and obstructions, and in the end, Time will have won out, in that every microsecond the implementor grabs from the hands of Time are bought with hours or days or weeks or months of effort expended by the implementor. ii When I began the adventure on which I am reporting in this book, I had the belief that I would simply gather benchmark programs, distribute them to a hand- ful of implementors, and get back the results; my major job would be to distribute the results to all interested parties. When I first sent out the initial benchmarks, there was an uproar because the benchmarks weren’t fair, they weren’t representa- tive of real Lisp programs, people didn’t care about performance now so why bring up this minor concern as a major one, and what was I trying to do, embarrass one group of implementors for the benefit of others? Throughout the adventure, which lasted four years, I was praised for perform- ing a public service, I was praised for helping find performance and correctness bugs, I was praised for taking the lead in a necessary area—gathering accurate and objective performance information—where others would fear to tread or would be too burdened to tread; and I was accused of favoritism, accused of industrial espi- onage, even a computer account was closed while I was using it because a system administrator was told that I was possibly gathering proprietary information. Some people requested that this book not contain any charts, but that the benchmark results be included in running text, the idea being that it would take a significant effort on the part of a reader to make a chart of his own. But despite the extremes of reaction to my activities, the most common reaction was for the Lisp implementor to look at the results he got running my benchmarks compared with the results from other Lisp implementations, and to turn, quietly and patiently, to his terminal to improve the results. Over the course of the four-year study I’ve watched the performance of some Lisp systems improve by factors of up to four on some benchmarks, and by factors of two and three overall. These results took the full four years to achieve in some cases, and I think it was the existence of a widely available, common set of benchmarks along with the results of those benchmarks for a number of Lisp implementations that have contributed to these improvements. It is a gift to be born beautiful or rich or intelligent, to be given, by birth, the possibilities of excellent education, to be endowed with gifts that allow one to make important and stunning contributions. And I respect those individuals who use their talents when those talents have been cultivated ‘in the usual manner.’ But I admire, much more, people who are born ugly or poor or of average intel- ligence, who have minimal opportunities for first-class education, who work their iii ways through bad schools and bad breaks to make contributions. Perhaps the contributions are less important or less frequent than from those who are blessed, but the contributions are the result of a strong will and advantageous application of available talent and skills. And so it is with the performance of Lisp systems: I respect the performance of Lisp systems based on special hardware designed by wizards, but I admire the performance of Lisp systems on stock hardware and written by the common implementor, especially when I’ve watched the performance of those latter systems creep up over the years, by small increments, and accomplished during periods of busy activity in other areas. Acknowledgements This book is really the confluence of works and results provided to me by many people: I did not run every benchmark reported here, I did not write every benchmark, and I did not create every section of this book. However, I gathered the raw material together and unified it into a book. The sections describing the various implementations was written based on information provided to me by the implementors of those systems. In these acknowledgements I hope to credit as accurately as I can remember those people who did most of the work reported here. L. Peter Deutsch got the project started by turning a simple suggestion by me for a methodology into a statement of volunteering. Early comments, crit- icisms, benchmarks, and benchmark results were provided by Charles Hedrick, Mabry Tyson, Paul Martin, Gerrold Ginsparg, Jon L. White, Richard Fateman, and Larry Masinter. Larry Masinter and I wrote a paper, entitled ‘Performance of Lisp Systems,’ which was presented at the 1982 ACM Symposium on Lisp and Functional Programming, and which is largely reproduced, with revision, in Chapter 1. Bob Boyer, Harry Barrow, and Richard Fateman contributed three of the more important benchmarks contained herein: BOYER, FFT, and FRPOLY. Forest Baskett wrote, for another context, PUZZLE. Larry Masinter contributed TAKL and TAKR. John McCarthy’s bad memory was responsible for TAK. The material for the sections on the Symbolics Lisp machines and the CADR was put together by Paul Wieneke, working from Symbolics and MIT documents, and the material on the instruction fetch unit was provided by Bruce Edwards; the material for the LMI section was contributed by Morris (Mache) Creeger of Lisp Machines Inc.; the S-1 Lisp section is an adaptation of a paper presented at the 1982 ACM Symposium on Lisp and Functional Programming written by Guy L. Steele Jr., Rod Brooks, and myself; the material for the Franz section was con- tributed by John Foderaro and Richard Fateman; the material for the NIL section was contributed by Glenn Burke; the material for Spice section was contributed by Skef Wholey; the material for the Vax Common Lisp section was contributed by Walter van Roggen; the material for the PSL section was contributed by Robert Kessler, Martin Griss, and Jim McDonald; the material for the Xerox section was contributed by Jon L White and Larry Masinter; and the material for the Data General section was contributed by Dan Oldman. v The following people ran benchmarks and provided a great deal of support and information about the benchmark results: Raymond Bates, Alan Bawden, Eric Benson, Bob Boyer, Rod Brooks, Gary Brown, Howard Cannon, George Carrette, Scott Fahlman, Mike Farmwald, William Galway, Jim Gay, Erik Gilbert, Joe Ginder, Bernie Greenberg, Richard Greenblatt, Carl W. Hoffman, Earl Killian, Paul Martin, Dave Moon, Vaughan Pratt, Tom Rindfleisch, Eric Schoen, Beau Sheil, Guy L. Steele, Jr., Bill vanMelle, and Dan Weinreb. Virginia Kean did a major editing job on this book. — R. P. G. Palo Alto, California May 1985 Contents Chapter 1 Introduction . 1 1.1 Levels of Lisp System Architecture . 2 1.2 Lisp Operation Level . 18 1.3 Major Lisp Facilities . 20 1.4 The Art of Benchmarking . 23 Chapter 2 The Implementations . 31 2.1 MacLisp . 31 2.2 MIT CADR . 34 2.3 Symbolics . 36 2.4 LMI Lambda . 42 2.5 S-1 Lisp . 46 2.6 Franz Lisp . 51 2.7 NIL . 54 2.8 Spice Lisp . 58 2.9 Vax Common Lisp . 63 2.10 Portable Standard Lisp . 66 2.11 Xerox D-Machine . 73 Chapter 3 The Benchmarks .
Recommended publications
  • Microprocessor
    MICROPROCESSOR www.MPRonline.com THE REPORTINSIDER’S GUIDE TO MICROPROCESSOR HARDWARE EEMBC’S MULTIBENCH ARRIVES CPU Benchmarks: Not Just For ‘Benchmarketing’ Any More By Tom R. Halfhill {7/28/08-01} Imagine a world without measurements or statistical comparisons. Baseball fans wouldn’t fail to notice that a .300 hitter is better than a .100 hitter. But would they welcome a trade that sends the .300 hitter to Cleveland for three .100 hitters? System designers and software developers face similar quandaries when making trade-offs EEMBC’s role has evolved over the years, and Multi- with multicore processors. Even if a dual-core processor Bench is another step. Originally, EEMBC was conceived as an appears to be better than a single-core processor, how much independent entity that would create benchmark suites and better is it? Twice as good? Would a quad-core processor be certify the scores for accuracy, allowing vendors and customers four times better? Are more cores worth the additional cost, to make valid comparisons among embedded microproces- design complexity, power consumption, and programming sors. (See MPR 5/1/00-02, “EEMBC Releases First Bench- difficulty? marks.”) EEMBC still serves that role. But, as it turns out, most The Embedded Microprocessor Benchmark Consor- EEMBC members don’t openly publish their scores. Instead, tium (EEMBC) wants to help answer those questions. they disclose scores to prospective customers under an NDA or EEMBC’s MultiBench 1.0 is a new benchmark suite for use the benchmarks for internal testing and analysis. measuring the throughput of multiprocessor systems, Partly for this reason, MPR rarely cites EEMBC scores including those built with multicore processors.
    [Show full text]
  • Load Testing, Benchmarking, and Application Performance Management for the Web
    Published in the 2002 Computer Measurement Group (CMG) Conference, Reno, NV, Dec. 2002. LOAD TESTING, BENCHMARKING, AND APPLICATION PERFORMANCE MANAGEMENT FOR THE WEB Daniel A. Menascé Department of Computer Science and E-center of E-Business George Mason University Fairfax, VA 22030-4444 [email protected] Web-based applications are becoming mission-critical for many organizations and their performance has to be closely watched. This paper discusses three important activities in this context: load testing, benchmarking, and application performance management. Best practices for each of these activities are identified. The paper also explains how basic performance results can be used to increase the efficiency of load testing procedures. infrastructure depends on the traffic it expects to see 1. Introduction at its site. One needs to spend enough but no more than is required in the IT infrastructure. Besides, Web-based applications are becoming mission- resources need to be spent where they will generate critical to most private and governmental the most benefit. For example, one should not organizations. The ever-increasing number of upgrade the Web servers if most of the delay is in computers connected to the Internet and the fast the database server. So, in order to maximize the growing number of Web-enabled wireless devices ROI, one needs to know when and how to upgrade create incentives for companies to invest in Web- the IT infrastructure. In other words, not spending at based infrastructures and the associated personnel the right time and spending at the wrong place will to maintain them. By establishing a Web presence, a reduce the cost-benefit of the investment.
    [Show full text]
  • Overview of the SPEC Benchmarks
    9 Overview of the SPEC Benchmarks Kaivalya M. Dixit IBM Corporation “The reputation of current benchmarketing claims regarding system performance is on par with the promises made by politicians during elections.” Standard Performance Evaluation Corporation (SPEC) was founded in October, 1988, by Apollo, Hewlett-Packard,MIPS Computer Systems and SUN Microsystems in cooperation with E. E. Times. SPEC is a nonprofit consortium of 22 major computer vendors whose common goals are “to provide the industry with a realistic yardstick to measure the performance of advanced computer systems” and to educate consumers about the performance of vendors’ products. SPEC creates, maintains, distributes, and endorses a standardized set of application-oriented programs to be used as benchmarks. 489 490 CHAPTER 9 Overview of the SPEC Benchmarks 9.1 Historical Perspective Traditional benchmarks have failed to characterize the system performance of modern computer systems. Some of those benchmarks measure component-level performance, and some of the measurements are routinely published as system performance. Historically, vendors have characterized the performances of their systems in a variety of confusing metrics. In part, the confusion is due to a lack of credible performance information, agreement, and leadership among competing vendors. Many vendors characterize system performance in millions of instructions per second (MIPS) and millions of floating-point operations per second (MFLOPS). All instructions, however, are not equal. Since CISC machine instructions usually accomplish a lot more than those of RISC machines, comparing the instructions of a CISC machine and a RISC machine is similar to comparing Latin and Greek. 9.1.1 Simple CPU Benchmarks Truth in benchmarking is an oxymoron because vendors use benchmarks for marketing purposes.
    [Show full text]
  • Opportunities and Open Problems for Static and Dynamic Program Analysis Mark Harman∗, Peter O’Hearn∗ ∗Facebook London and University College London, UK
    1 From Start-ups to Scale-ups: Opportunities and Open Problems for Static and Dynamic Program Analysis Mark Harman∗, Peter O’Hearn∗ ∗Facebook London and University College London, UK Abstract—This paper1 describes some of the challenges and research questions that target the most productive intersection opportunities when deploying static and dynamic analysis at we have yet witnessed: that between exciting, intellectually scale, drawing on the authors’ experience with the Infer and challenging science, and real-world deployment impact. Sapienz Technologies at Facebook, each of which started life as a research-led start-up that was subsequently deployed at scale, Many industrialists have perhaps tended to regard it unlikely impacting billions of people worldwide. that much academic work will prove relevant to their most The paper identifies open problems that have yet to receive pressing industrial concerns. On the other hand, it is not significant attention from the scientific community, yet which uncommon for academic and scientific researchers to believe have potential for profound real world impact, formulating these that most of the problems faced by industrialists are either as research questions that, we believe, are ripe for exploration and that would make excellent topics for research projects. boring, tedious or scientifically uninteresting. This sociological phenomenon has led to a great deal of miscommunication between the academic and industrial sectors. I. INTRODUCTION We hope that we can make a small contribution by focusing on the intersection of challenging and interesting scientific How do we transition research on static and dynamic problems with pressing industrial deployment needs. Our aim analysis techniques from the testing and verification research is to move the debate beyond relatively unhelpful observations communities to industrial practice? Many have asked this we have typically encountered in, for example, conference question, and others related to it.
    [Show full text]
  • The Evolution of Lisp
    1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp.
    [Show full text]
  • Evaluation of AMD EPYC
    Evaluation of AMD EPYC Chris Hollowell <[email protected]> HEPiX Fall 2018, PIC Spain What is EPYC? EPYC is a new line of x86_64 server CPUs from AMD based on their Zen microarchitecture Same microarchitecture used in their Ryzen desktop processors Released June 2017 First new high performance series of server CPUs offered by AMD since 2012 Last were Piledriver-based Opterons Steamroller Opteron products cancelled AMD had focused on low power server CPUs instead x86_64 Jaguar APUs ARM-based Opteron A CPUs Many vendors are now offering EPYC-based servers, including Dell, HP and Supermicro 2 How Does EPYC Differ From Skylake-SP? Intel’s Skylake-SP Xeon x86_64 server CPU line also released in 2017 Both Skylake-SP and EPYC CPU dies manufactured using 14 nm process Skylake-SP introduced AVX512 vector instruction support in Xeon AVX512 not available in EPYC HS06 official GCC compilation options exclude autovectorization Stock SL6/7 GCC doesn’t support AVX512 Support added in GCC 4.9+ Not heavily used (yet) in HEP/NP offline computing Both have models supporting 2666 MHz DDR4 memory Skylake-SP 6 memory channels per processor 3 TB (2-socket system, extended memory models) EPYC 8 memory channels per processor 4 TB (2-socket system) 3 How Does EPYC Differ From Skylake (Cont)? Some Skylake-SP processors include built in Omnipath networking, or FPGA coprocessors Not available in EPYC Both Skylake-SP and EPYC have SMT (HT) support 2 logical cores per physical core (absent in some Xeon Bronze models) Maximum core count (per socket) Skylake-SP – 28 physical / 56 logical (Xeon Platinum 8180M) EPYC – 32 physical / 64 logical (EPYC 7601) Maximum socket count Skylake-SP – 8 (Xeon Platinum) EPYC – 2 Processor Inteconnect Skylake-SP – UltraPath Interconnect (UPI) EYPC – Infinity Fabric (IF) PCIe lanes (2-socket system) Skylake-SP – 96 EPYC – 128 (some used by SoC functionality) Same number available in single socket configuration 4 EPYC: MCM/SoC Design EPYC utilizes an SoC design Many functions normally found in motherboard chipset on the CPU SATA controllers USB controllers etc.
    [Show full text]
  • 1960 1970 1980 1990 Japan California………………… UT IL in PA NJ NY Massachusetts………… Europe Lisp 1.5 TX
    Japan UT IL PA NY Massachusetts………… Europe California………………… TX IN NJ Lisp 1.5 1960 1970 1980 1990 Direct Relationships Lisp 1.5 LISP Family Graph Lisp 1.5 LISP 1.5 Family Lisp 1.5 Basic PDP-1 LISP M-460 LISP 7090 LISP 1.5 BBN PDP-1 LISP 7094 LISP 1.5 Stanford PDP-1 LISP SDS-940 LISP Q-32 LISP PDP-6 LISP LISP 2 MLISP MIT PDP-1 LISP Stanford LISP 1.6 Cambridge LISP Standard LISP UCI-LISP MacLisp Family PDP-6 LISP MacLisp Multics MacLisp CMU SAIL MacLisp MacLisp VLISP Franz Lisp Machine Lisp LISP S-1 Lisp NIL Spice Lisp Zetalisp IBM Lisp Family 7090 LISP 1.5 Lisp360 Lisp370 Interlisp Illinois SAIL MacLisp VM LISP Interlisp Family SDS-940 LISP BBN-LISP Interlisp 370 Spaghetti stacks Interlisp LOOPS Common LOOPS Lisp Machines Spice Lisp Machine Lisp Interlisp Lisp (MIT CONS) (Xerox (BBN Jericho) (PERQ) (MIT CADR) Alto, Dorado, (LMI Lambda) Dolphin, Dandelion) Lisp Zetalisp TAO (3600) (ELIS) Machine Lisp (TI Explorer) Common Lisp Family APL APL\360 ECL Interlisp ARPA S-1 Lisp Scheme Meeting Spice at SRI, Lisp April 1991 PSL KCL NIL CLTL1 Zetalisp X3J13 CLTL2 CLOS ISLISP X3J13 Scheme Extended Family COMIT Algol 60 SNOBOL METEOR CONVERT Simula 67 Planner LOGO DAISY, Muddle Scheme 311, Microplanner Scheme 84 Conniver PLASMA (actors) Scheme Revised Scheme T 2 CLTL1 Revised Scheme Revised2 Scheme 3 CScheme Revised Scheme MacScheme PC Scheme Chez Scheme IEEE Revised4 Scheme Scheme Object-Oriented Influence Simula 67 Smalltalk-71 LOGO Smalltalk-72 CLU PLASMA (actors) Flavors Common Objects LOOPS ObjectLisp CommonLOOPS EuLisp New Flavors CLTL2 CLOS Dylan X3J13 ISLISP Lambda Calculus Church, 1941 λ Influence Lisp 1.5 Landin (SECD, ISWIM) Evans (PAL) Reynolds (Definitional Interpreters) Lisp370 Scheme HOPE ML Standard ML Standard ML of New Jersey Haskell FORTRAN Influence FORTRAN FLPL Lisp 1.5 S-1 Lisp Lisp Machine Lisp CLTL1 Revised3 Zetalisp Scheme X3J13 CLTL2 IEEE Scheme X3J13 John McCarthy Lisp 1.5 Danny Bobrow Richard Gabriel Guy Steele Dave Moon Jon L White.
    [Show full text]
  • An Effective Dynamic Analysis for Detecting Generalized Deadlocks
    An Effective Dynamic Analysis for Detecting Generalized Deadlocks Pallavi Joshi Mayur Naik Koushik Sen EECS, UC Berkeley, CA, USA Intel Labs Berkeley, CA, USA EECS, UC Berkeley, CA, USA [email protected] [email protected] [email protected] David Gay Intel Labs Berkeley, CA, USA [email protected] ABSTRACT for a synchronization event that will never happen. Dead- We present an effective dynamic analysis for finding a broad locks are a common problem in real-world multi-threaded class of deadlocks, including the well-studied lock-only dead- programs. For instance, 6,500/198,000 (∼ 3%) of the bug locks as well as the less-studied, but no less widespread or reports in the bug database at http://bugs.sun.com for insidious, deadlocks involving condition variables. Our anal- Sun's Java products involve the keyword \deadlock" [11]. ysis consists of two stages. In the first stage, our analysis Moreover, deadlocks often occur non-deterministically, un- observes a multi-threaded program execution and generates der very specific thread schedules, making them harder to a simple multi-threaded program, called a trace program, detect and reproduce using conventional testing approaches. that only records operations observed during the execution Finally, extending existing multi-threaded programs or fix- that are deemed relevant to finding deadlocks. Such op- ing other concurrency bugs like races often involves intro- erations include lock acquire and release, wait and notify, ducing new synchronization, which, in turn, can introduce thread start and join, and change of values of user-identified new deadlocks. Therefore, deadlock detection tools are im- synchronization predicates associated with condition vari- portant for developing and testing multi-threaded programs.
    [Show full text]
  • BOOM): an Industry- Competitive, Synthesizable, Parameterized RISC-V Processor
    The Berkeley Out-of-Order Machine (BOOM): An Industry- Competitive, Synthesizable, Parameterized RISC-V Processor Christopher Celio David A. Patterson Krste Asanović Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-167 http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html June 13, 2015 Copyright © 2015, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. The Berkeley Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor Christopher Celio, David Patterson, and Krste Asanovic´ University of California, Berkeley, California 94720–1770 [email protected] BOOM is a work-in-progress. Results shown are prelimi- nary and subject to change as of 2015 June. I$ L1 D$ (32k) L2 data 1. The Berkeley Out-of-Order Machine BOOM is a synthesizable, parameterized, superscalar out- exe of-order RISC-V core designed to serve as the prototypical baseline processor for future micro-architectural studies of uncore regfile out-of-order processors. Our goal is to provide a readable, issue open-source implementation for use in education, research, exe and industry. uncore BOOM is written in roughly 9,000 lines of the hardware L2 data (256k) construction language Chisel.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Jon L. White Collection on Common Lisp
    http://oac.cdlib.org/findaid/ark:/13030/c89w0mkb No online items Jon L. White collection on Common Lisp Finding aid prepared by Bo Doub, Kim Hayden, and Sara Chabino Lott Processing of this collection was made possible through generous funding from The Andrew W. Mellon Foundation, administered through the Council on Library and Information Resources' Cataloging Hidden Special Collections and Archives grant. Computer History Museum 1401 N. Shoreline Blvd. Mountain View, CA, 94043 (650) 810-1010 [email protected] March 2017 Jon L. White collection on X6823.2013 1 Common Lisp Title: Jon L. White collection Identifier/Call Number: X6823.2013 Contributing Institution: Computer History Museum Language of Material: English Physical Description: 8.75 Linear feet,7 record cartons Date (bulk): Bulk, 1978-1995 Date (inclusive): 1963-2012 Abstract: The Jon L. White collection on Common Lisp contains material relating to the development and standardization of the programming language Common Lisp and, more generally, the Lisp family of programming languages. Records date from 1963 to 2012, with the bulk of the material ranging from 1978 to 1995, when White was working at MIT’s Artificial Intelligence Laboratory, Xerox PARC (Palo Alto Research Center), Lucid, and Harlequin Group. Throughout many of these positions, White was serving on the X3J13 Committee to formalize a Common Lisp standard, which aimed to combine and standardize many previous dialects of Lisp. This collection consists of conference proceedings, manuals, X3J13 Committee correspondence and meeting minutes, notebooks, technical papers, and periodicals documenting White’s work in all of these roles. Other dialects of Lisp--especially MAClisp--are also major focuses of the collection.
    [Show full text]
  • History of the Lisp Language
    History of the Lisp Language History of the Lisp Language The following information is derived from the history section of dpANS Common Lisp. Lisp is a family of languages with a long history. Early key ideas in Lisp were developed by John McCarthy during the 1956 Dartmouth Summer Research Project on Artificial Intelligence. McCarthy’s motivation was to develop an algebraic list processing language for artificial intelligence work. Implementation efforts for early dialects of Lisp were undertaken on the IBM 704, the IBM 7090, the Digital Equipment Corporation (DEC) PDP−1, the DEC PDP−6, and the PDP−10. The primary dialect of Lisp between 1960 and 1965 was Lisp 1.5. By the early 1970’s there were two predominant dialects of Lisp, both arising from these early efforts: MacLisp and Interlisp. For further information about very early Lisp dialects, see The Anatomy of Lisp or Lisp 1.5 Programmer’s Manual. MacLisp improved on the Lisp 1.5 notion of special variables and error handling. MacLisp also introduced the concept of functions that could take a variable number of arguments, macros, arrays, non−local dynamic exits, fast arithmetic, the first good Lisp compiler, and an emphasis on execution speed. For further information about Maclisp, see Maclisp Reference Manual, Revision 0 or The Revised Maclisp Manual. Interlisp introduced many ideas into Lisp programming environments and methodology. One of the Interlisp ideas that influenced Common Lisp was an iteration construct implemented by Warren Teitelman that inspired the loop macro used both on the Lisp Machines and in MacLisp, and now in Common Lisp.
    [Show full text]