Microprocessor

Total Page:16

File Type:pdf, Size:1020Kb

Microprocessor MICROPROCESSOR www.MPRonline.com THE REPORTINSIDER’S GUIDE TO MICROPROCESSOR HARDWARE EEMBC’S MULTIBENCH ARRIVES CPU Benchmarks: Not Just For ‘Benchmarketing’ Any More By Tom R. Halfhill {7/28/08-01} Imagine a world without measurements or statistical comparisons. Baseball fans wouldn’t fail to notice that a .300 hitter is better than a .100 hitter. But would they welcome a trade that sends the .300 hitter to Cleveland for three .100 hitters? System designers and software developers face similar quandaries when making trade-offs EEMBC’s role has evolved over the years, and Multi- with multicore processors. Even if a dual-core processor Bench is another step. Originally, EEMBC was conceived as an appears to be better than a single-core processor, how much independent entity that would create benchmark suites and better is it? Twice as good? Would a quad-core processor be certify the scores for accuracy, allowing vendors and customers four times better? Are more cores worth the additional cost, to make valid comparisons among embedded microproces- design complexity, power consumption, and programming sors. (See MPR 5/1/00-02, “EEMBC Releases First Bench- difficulty? marks.”) EEMBC still serves that role. But, as it turns out, most The Embedded Microprocessor Benchmark Consor- EEMBC members don’t openly publish their scores. Instead, tium (EEMBC) wants to help answer those questions. they disclose scores to prospective customers under an NDA or EEMBC’s MultiBench 1.0 is a new benchmark suite for use the benchmarks for internal testing and analysis. measuring the throughput of multiprocessor systems, Partly for this reason, MPR rarely cites EEMBC scores including those built with multicore processors. MultiBench in articles. EEMBC forbids members to publicly release is EEMBC’s biggest launch since introducing the Energy- their scores without EEMBC’s independent certification. Bench power-consumption benchmarks two years ago. (See Another reason for the scarcity of EEMBC scores in MPR is MPR 7/17/06-02, “EEMBC Energizes Benchmarking.”) they’re usually not available for the processors we write [Full disclosure: EEMBC was founded and is headed about—processors that aren’t available yet. And even if more by Markus Levy, a former Microprocessor Report technology EEMBC scores were available, some engineers remain suspi- analyst and a current member of the MPR Editorial Board.] cious of any attempts to distill microprocessor performance into a few numbers. (See MPR 8/30/04-01, “Benchmarking EEMBC’s Evolution: More Than Scores the Benchmarks.”) Since its inception in 1997, EEMBC’s mission has been to MultiBench seems to be moving in the same general produce benchmarks for embedded processors, not for PC direction as other EEMBC benchmarks—away from pub- or server CPUS. In keeping with that mission, the Multi- lished scores, closer to private testing. Although some EEMBC Bench suite consists of compute-intensive tasks commonly members have been using early versions of MultiBench for six performed by networking equipment, office equipment months, no member is near to releasing certified MultiBench (especially printers), and consumer-electronics products. scores. MPR suspects that MultiBench will find its niche Although EEMBC benchmarks may be considered artificial primarily as an analysis tool for internal testing and closed- in that they aren’t complete applications, they perform func- door sales pitches, not as a source for widely publicized tions extracted or adapted from real-world applications. benchmark comparisons. Article Reprint 2 EEMBC’s Multibench Arrives That’s not all bad. Although published scores make for tasks into application-oriented categories of benchmark interesting “benchmarketing,”what the industry sorely needs suites (Networking, Consumer, Telecom, etc.). MultiBench is a technically valid method for evaluating the performance 1.0 is a unified suite that doesn’t specialize by application of multicore processors. Within its limitations, MultiBench domain. Specialized suites will come in the future. meets that need. Creating Custom Workloads New Concept: Work Items and Workloads Although MultiBench 1.0 defines 36 workloads, EEMBC EEMBC adapted most tasks in MultiBench from existing members and MultiBench licensees can create their own cus- EEMBC suites, in addition to writing entirely new tasks. tom workloads by selectively choosing work items and chang- Code reuse saved development time and made sense, because ing the parameters of the items. Almost all MultiBench work multicore embedded processors generally perform the same items can operate on different datasets with adjustable levels application-level tasks as single-core embedded processors. of threading. Testers can substitute their own datasets, too. Tasks were created or ported by EEMBC members and by the Custom workloads aren’t valid for MultiBench scoring, EEMBC Technology Center and its director of software but they allow testers to create a virtually infinite variety of engineering, Shay Gal-On. workloads, even when using the standard EEMBC datasets. Previously, EEMBC referred to the benchmark tasks in Testers can exercise processors and systems to identify each suite as “kernels”—a somewhat confusing term, because strengths and weaknesses or to compare the performance of they aren’t related to operating-system kernels. In EEMBC multicore processors with that of single-core processors. Engi- parlance, a kernel is simply an algorithm or routine that neers can test the effectiveness of multithreading at different performs a common task found in real-world embedded soft- levels: time-sliced on a single processor or distributed among ware. Now EEMBC is using new terminology. MultiBench multiple processors. tasks are called “workloads,” which may include one or more To help testers assemble the workloads, EEMBC offers “work items.” Work items are similar to the kernels of old, new tools. Figure 2 is a screen shot of the Workload Creator, because they mate algorithms with sample datasets on which which lets users choose work items from a list. Items available the algorithms operate. in the list depend on which workloads the tester has For example, one MultiBench workload is 64M-cmykw2. licensed. In addition, testers can build their own work items It has a single work item: a color-conversion routine that from scratch and link them into the Workload Creator by transforms four 12-megapixel images from the RGB color implementing a special application programming interface space to the CMYK color space. Another single-item Multi- (API). Workload Creator is part of MultiBench Architect, an Bench workload is 64M-rotatew2, an image-rotation routine optional tool. EEMBC’s technical documentation explains that operates on four 12-megapixel images, turning each one the function of each work item and shows its adjustable 90 degrees clockwise. And another MultiBench workload is parameters, such as the number of possible threads and the 64M-cmykw2-rotatew2, which combines the color-conversion official EEMBC datasets approved for use with the item. and rotation workloads to create a two-item workload. In Because MultiBench allows a variable number of work all, MultiBench 1.0 has 36 workloads, some of which are items to run simultaneously, the number of simultaneous combinations of work items in other workloads. threads is also variable. And some multithreaded work items There’s another twist. Work items may be single operate on multiple slices of data—potentially, another threaded or may decompose the data for processing by multi- adjustable parameter. When porting existing kernels to ple threads. This variation allows MultiBench to test data- MultiBench, EEMBC made other improvements as well, such level parallelism within a single work item as well as thread- as modifying the algorithms to mirror the latest application level parallelism among multiple work items. The grand trends and changing the sample data to reflect the larger concept is a little difficult to grasp at first, but it allows for a datasets crunched by today’s systems. In all these ways, great variety of possible workloads. A MultiBench workload MultiBench is more than simply a multiprocessing version may consist of a single work item; two or more instances of of existing EEMBC benchmarks. At every level, EEMBC has the same work item, operating on different datasets; two or updated the tasks to better represent the progress of real- more different work items; and work items that are single- world embedded software. or multithreaded. Figure 1 illustrates this concept. EEMBC chose the 36 workloads in MultiBench 1.0 to Inside the MultiBench Suite keep things relatively simple. Actually, EEMBC has ported Existing benchmark suites from which EEMBC derived the almost all the kernels in existing EEMBC suites to function as MultiBench workloads include Networking 2.0, Office MultiBench workloads. Including all these workloads in Automation 2.0, and Digital Entertainment 1.0. As mentioned MultiBench 1.0 would have overwhelmed benchmark testers. above, EEMBC has ported almost all the tasks in all the For scoring purposes, if nothing else, it’s better to limit the suites—including Automotive 1.1 and Telecom 1.1—but is number of workloads to a manageable number. For now, using only a subset of them in MultiBench 1.0. Future releases MultiBench departs from the usual EEMBC practice of sorting of MultiBench will have more workloads. In addition to © IN-STAT JULY 28, 2008 MICROPROCESSOR REPORT EEMBC’s Multibench Arrives
Recommended publications
  • Load Testing, Benchmarking, and Application Performance Management for the Web
    Published in the 2002 Computer Measurement Group (CMG) Conference, Reno, NV, Dec. 2002. LOAD TESTING, BENCHMARKING, AND APPLICATION PERFORMANCE MANAGEMENT FOR THE WEB Daniel A. Menascé Department of Computer Science and E-center of E-Business George Mason University Fairfax, VA 22030-4444 [email protected] Web-based applications are becoming mission-critical for many organizations and their performance has to be closely watched. This paper discusses three important activities in this context: load testing, benchmarking, and application performance management. Best practices for each of these activities are identified. The paper also explains how basic performance results can be used to increase the efficiency of load testing procedures. infrastructure depends on the traffic it expects to see 1. Introduction at its site. One needs to spend enough but no more than is required in the IT infrastructure. Besides, Web-based applications are becoming mission- resources need to be spent where they will generate critical to most private and governmental the most benefit. For example, one should not organizations. The ever-increasing number of upgrade the Web servers if most of the delay is in computers connected to the Internet and the fast the database server. So, in order to maximize the growing number of Web-enabled wireless devices ROI, one needs to know when and how to upgrade create incentives for companies to invest in Web- the IT infrastructure. In other words, not spending at based infrastructures and the associated personnel the right time and spending at the wrong place will to maintain them. By establishing a Web presence, a reduce the cost-benefit of the investment.
    [Show full text]
  • Overview of the SPEC Benchmarks
    9 Overview of the SPEC Benchmarks Kaivalya M. Dixit IBM Corporation “The reputation of current benchmarketing claims regarding system performance is on par with the promises made by politicians during elections.” Standard Performance Evaluation Corporation (SPEC) was founded in October, 1988, by Apollo, Hewlett-Packard,MIPS Computer Systems and SUN Microsystems in cooperation with E. E. Times. SPEC is a nonprofit consortium of 22 major computer vendors whose common goals are “to provide the industry with a realistic yardstick to measure the performance of advanced computer systems” and to educate consumers about the performance of vendors’ products. SPEC creates, maintains, distributes, and endorses a standardized set of application-oriented programs to be used as benchmarks. 489 490 CHAPTER 9 Overview of the SPEC Benchmarks 9.1 Historical Perspective Traditional benchmarks have failed to characterize the system performance of modern computer systems. Some of those benchmarks measure component-level performance, and some of the measurements are routinely published as system performance. Historically, vendors have characterized the performances of their systems in a variety of confusing metrics. In part, the confusion is due to a lack of credible performance information, agreement, and leadership among competing vendors. Many vendors characterize system performance in millions of instructions per second (MIPS) and millions of floating-point operations per second (MFLOPS). All instructions, however, are not equal. Since CISC machine instructions usually accomplish a lot more than those of RISC machines, comparing the instructions of a CISC machine and a RISC machine is similar to comparing Latin and Greek. 9.1.1 Simple CPU Benchmarks Truth in benchmarking is an oxymoron because vendors use benchmarks for marketing purposes.
    [Show full text]
  • Programmers' Tool Chain
    Reduce the complexity of programming multicore ++ Offload™ for PlayStation®3 | Offload™ for Cell Broadband Engine™ | Offload™ for Embedded | Custom C and C++ Compilers | Custom Shader Language Compiler www.codeplay.com It’s a risk to underestimate the complexity of programming multicore applications Software developers are now presented with a rapidly-growing range of different multi-core processors. The common feature of many of these processors is that they are difficult and error-prone to program with existing tools, give very unpredictable performance, and that incompatible, complex programming models are used. Codeplay develop compilers and programming tools with one primary goal - to make it easy for programmers to achieve big performance boosts with multi-core processors, but without needing bigger, specially-trained, expensive development teams to get there. Introducing Codeplay Based in Edinburgh, Scotland, Codeplay Software Limited was founded by veteran games developer Andrew Richards in 2002 with funding from Jez San (the founder of Argonaut Games and ARC International). Codeplay introduced their first product, VectorC, a highly optimizing compiler for x86 PC and PlayStation®2, in 2003. In 2004 Codeplay further developed their business by offering services to processor developers to provide them with compilers and programming tools for their new and unique architectures, using VectorC’s highly retargetable compiler technology. Realising the need for new multicore tools Codeplay started the development of the company’s latest product, the Offload™ C++ Multicore Programming Platform. In October 2009 Offload™: Community Edition was released as a free-to-use tool for PlayStation®3 programmers. Experience and Expertise Codeplay have developed compilers and software optimization technology since 1999.
    [Show full text]
  • Opportunities and Open Problems for Static and Dynamic Program Analysis Mark Harman∗, Peter O’Hearn∗ ∗Facebook London and University College London, UK
    1 From Start-ups to Scale-ups: Opportunities and Open Problems for Static and Dynamic Program Analysis Mark Harman∗, Peter O’Hearn∗ ∗Facebook London and University College London, UK Abstract—This paper1 describes some of the challenges and research questions that target the most productive intersection opportunities when deploying static and dynamic analysis at we have yet witnessed: that between exciting, intellectually scale, drawing on the authors’ experience with the Infer and challenging science, and real-world deployment impact. Sapienz Technologies at Facebook, each of which started life as a research-led start-up that was subsequently deployed at scale, Many industrialists have perhaps tended to regard it unlikely impacting billions of people worldwide. that much academic work will prove relevant to their most The paper identifies open problems that have yet to receive pressing industrial concerns. On the other hand, it is not significant attention from the scientific community, yet which uncommon for academic and scientific researchers to believe have potential for profound real world impact, formulating these that most of the problems faced by industrialists are either as research questions that, we believe, are ripe for exploration and that would make excellent topics for research projects. boring, tedious or scientifically uninteresting. This sociological phenomenon has led to a great deal of miscommunication between the academic and industrial sectors. I. INTRODUCTION We hope that we can make a small contribution by focusing on the intersection of challenging and interesting scientific How do we transition research on static and dynamic problems with pressing industrial deployment needs. Our aim analysis techniques from the testing and verification research is to move the debate beyond relatively unhelpful observations communities to industrial practice? Many have asked this we have typically encountered in, for example, conference question, and others related to it.
    [Show full text]
  • Evaluation of AMD EPYC
    Evaluation of AMD EPYC Chris Hollowell <[email protected]> HEPiX Fall 2018, PIC Spain What is EPYC? EPYC is a new line of x86_64 server CPUs from AMD based on their Zen microarchitecture Same microarchitecture used in their Ryzen desktop processors Released June 2017 First new high performance series of server CPUs offered by AMD since 2012 Last were Piledriver-based Opterons Steamroller Opteron products cancelled AMD had focused on low power server CPUs instead x86_64 Jaguar APUs ARM-based Opteron A CPUs Many vendors are now offering EPYC-based servers, including Dell, HP and Supermicro 2 How Does EPYC Differ From Skylake-SP? Intel’s Skylake-SP Xeon x86_64 server CPU line also released in 2017 Both Skylake-SP and EPYC CPU dies manufactured using 14 nm process Skylake-SP introduced AVX512 vector instruction support in Xeon AVX512 not available in EPYC HS06 official GCC compilation options exclude autovectorization Stock SL6/7 GCC doesn’t support AVX512 Support added in GCC 4.9+ Not heavily used (yet) in HEP/NP offline computing Both have models supporting 2666 MHz DDR4 memory Skylake-SP 6 memory channels per processor 3 TB (2-socket system, extended memory models) EPYC 8 memory channels per processor 4 TB (2-socket system) 3 How Does EPYC Differ From Skylake (Cont)? Some Skylake-SP processors include built in Omnipath networking, or FPGA coprocessors Not available in EPYC Both Skylake-SP and EPYC have SMT (HT) support 2 logical cores per physical core (absent in some Xeon Bronze models) Maximum core count (per socket) Skylake-SP – 28 physical / 56 logical (Xeon Platinum 8180M) EPYC – 32 physical / 64 logical (EPYC 7601) Maximum socket count Skylake-SP – 8 (Xeon Platinum) EPYC – 2 Processor Inteconnect Skylake-SP – UltraPath Interconnect (UPI) EYPC – Infinity Fabric (IF) PCIe lanes (2-socket system) Skylake-SP – 96 EPYC – 128 (some used by SoC functionality) Same number available in single socket configuration 4 EPYC: MCM/SoC Design EPYC utilizes an SoC design Many functions normally found in motherboard chipset on the CPU SATA controllers USB controllers etc.
    [Show full text]
  • An Effective Dynamic Analysis for Detecting Generalized Deadlocks
    An Effective Dynamic Analysis for Detecting Generalized Deadlocks Pallavi Joshi Mayur Naik Koushik Sen EECS, UC Berkeley, CA, USA Intel Labs Berkeley, CA, USA EECS, UC Berkeley, CA, USA [email protected] [email protected] [email protected] David Gay Intel Labs Berkeley, CA, USA [email protected] ABSTRACT for a synchronization event that will never happen. Dead- We present an effective dynamic analysis for finding a broad locks are a common problem in real-world multi-threaded class of deadlocks, including the well-studied lock-only dead- programs. For instance, 6,500/198,000 (∼ 3%) of the bug locks as well as the less-studied, but no less widespread or reports in the bug database at http://bugs.sun.com for insidious, deadlocks involving condition variables. Our anal- Sun's Java products involve the keyword \deadlock" [11]. ysis consists of two stages. In the first stage, our analysis Moreover, deadlocks often occur non-deterministically, un- observes a multi-threaded program execution and generates der very specific thread schedules, making them harder to a simple multi-threaded program, called a trace program, detect and reproduce using conventional testing approaches. that only records operations observed during the execution Finally, extending existing multi-threaded programs or fix- that are deemed relevant to finding deadlocks. Such op- ing other concurrency bugs like races often involves intro- erations include lock acquire and release, wait and notify, ducing new synchronization, which, in turn, can introduce thread start and join, and change of values of user-identified new deadlocks. Therefore, deadlock detection tools are im- synchronization predicates associated with condition vari- portant for developing and testing multi-threaded programs.
    [Show full text]
  • BOOM): an Industry- Competitive, Synthesizable, Parameterized RISC-V Processor
    The Berkeley Out-of-Order Machine (BOOM): An Industry- Competitive, Synthesizable, Parameterized RISC-V Processor Christopher Celio David A. Patterson Krste Asanović Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-167 http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html June 13, 2015 Copyright © 2015, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. The Berkeley Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor Christopher Celio, David Patterson, and Krste Asanovic´ University of California, Berkeley, California 94720–1770 [email protected] BOOM is a work-in-progress. Results shown are prelimi- nary and subject to change as of 2015 June. I$ L1 D$ (32k) L2 data 1. The Berkeley Out-of-Order Machine BOOM is a synthesizable, parameterized, superscalar out- exe of-order RISC-V core designed to serve as the prototypical baseline processor for future micro-architectural studies of uncore regfile out-of-order processors. Our goal is to provide a readable, issue open-source implementation for use in education, research, exe and industry. uncore BOOM is written in roughly 9,000 lines of the hardware L2 data (256k) construction language Chisel.
    [Show full text]
  • A Randomized Dynamic Program Analysis Technique for Detecting Real Deadlocks
    A Randomized Dynamic Program Analysis Technique for Detecting Real Deadlocks Pallavi Joshi Chang-Seo Park Mayur Naik Koushik Sen Intel Research, Berkeley, USA EECS Department, UC Berkeley, USA [email protected] {pallavi,parkcs,ksen}@cs.berkeley.edu Abstract cipline followed by the parent software and this sometimes results We present a novel dynamic analysis technique that finds real dead- in deadlock bugs [17]. locks in multi-threaded programs. Our technique runs in two stages. Deadlocks are often difficult to find during the testing phase In the first stage, we use an imprecise dynamic analysis technique because they happen under very specific thread schedules. Coming to find potential deadlocks in a multi-threaded program by observ- up with these subtle thread schedules through stress testing or ing an execution of the program. In the second stage, we control random testing is often difficult. Model checking [15, 11, 7, 14, 6] a random thread scheduler to create the potential deadlocks with removes these limitations of testing by systematically exploring high probability. Unlike other dynamic analysis techniques, our ap- all thread schedules. However, model checking fails to scale for proach has the advantage that it does not give any false warnings. large multi-threaded programs due to the exponential increase in We have implemented the technique in a prototype tool for Java, the number of thread schedules with execution length. and have experimented on a number of large multi-threaded Java Several program analysis techniques, both static [19, 10, 2, 9, programs. We report a number of previously known and unknown 27, 29, 21] and dynamic [12, 13, 4, 1], have been developed to de- real deadlocks that were found in these benchmarks.
    [Show full text]
  • Specfp Benchmark Disclosure
    SPEC CFP2006 Result Copyright 2006-2016 Standard Performance Evaluation Corporation Cisco Systems SPECfp2006 = Not Run Cisco UCS C220 M4 (Intel Xeon E5-2667 v4, 3.20 GHz) SPECfp_base2006 = 125 CPU2006 license: 9019 Test date: Mar-2016 Test sponsor: Cisco Systems Hardware Availability: Mar-2016 Tested by: Cisco Systems Software Availability: Dec-2015 0 30.0 60.0 90.0 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 900 410.bwaves 572 416.gamess 43.1 433.milc 72.5 434.zeusmp 225 435.gromacs 63.4 436.cactusADM 894 437.leslie3d 427 444.namd 31.6 447.dealII 67.6 450.soplex 48.3 453.povray 62.2 454.calculix 61.6 459.GemsFDTD 242 465.tonto 52.1 470.lbm 799 481.wrf 120 482.sphinx3 91.6 SPECfp_base2006 = 125 Hardware Software CPU Name: Intel Xeon E5-2667 v4 Operating System: SUSE Linux Enterprise Server 12 SP1 (x86_64) CPU Characteristics: Intel Turbo Boost Technology up to 3.60 GHz 3.12.49-11-default CPU MHz: 3200 Compiler: C/C++: Version 16.0.0.101 of Intel C++ Studio XE for Linux; FPU: Integrated Fortran: Version 16.0.0.101 of Intel Fortran CPU(s) enabled: 16 cores, 2 chips, 8 cores/chip Studio XE for Linux CPU(s) orderable: 1,2 chips Auto Parallel: Yes Primary Cache: 32 KB I + 32 KB D on chip per core File System: xfs Secondary Cache: 256 MB I+D on chip per core System State: Run level 3 (multi-user) Continued on next page Continued on next page Standard Performance Evaluation Corporation [email protected] Page 1 http://www.spec.org/ SPEC CFP2006 Result Copyright 2006-2016 Standard Performance
    [Show full text]
  • A Real-World Benchmark Model for Testing Concurrent Real-Time Systems in the Automotive Domain
    A Real-World Benchmark Model for Testing Concurrent Real-Time Systems in the Automotive Domain Jan Peleska1, Artur Honisch3, Florian Lapschies1, Helge L¨oding2, Hermann Schmid3, Peer Smuda3, Elena Vorobev1, and Cornelia Zahlten2 1 Department of Mathematics and Computer Science University of Bremen, Germany fjp,florian,[email protected] 2 Verified Systems International GmbH, Bremen, Germany fhloeding,cmzg@verified.de 3 Daimler AG, Stuttgart, Germany fartur.honisch,hermann.s.schmid,[email protected] Abstract. In this paper we present a model for automotive system tests of functionality related to turn indicator lights. The model cov- ers the complete functionality available in Mercedes Benz vehicles, com- prising turn indication, varieties of emergency flashing, crash flashing, theft flashing and open/close flashing, as well as configuration-dependent variants. It is represented in UML2 and associated with a synchronous real-time systems semantics conforming to Harel's original Statecharts interpretation. We describe the underlying methodological concepts of the tool used for automated model-based test generation, which was developed by Verified Systems International GmbH in cooperation with Daimler and the University of Bremen. A test suite is described as initial reference for future competing solutions. The model is made available in several file formats, so that it can be loaded into existing CASE tools or test generators. It has been originally developed and applied by Daimler for automatically deriving test cases, concrete test data and test proce- dures executing these test cases in Daimler's hardware-in-the-loop sys- tem testing environment. In 2011 Daimler decided to allow publication of this model with the objective to serve as a "real-world" benchmark supporting research of model based testing.
    [Show full text]
  • Optimistic Hybrid Analysis: Accelerating Dynamic Analysis Through Predicated Static Analysis
    Optimistic Hybrid Analysis: Accelerating Dynamic Analysis through Predicated Static Analysis David Devecsery Peter M. Chen University of Michigan University of Michigan [email protected] [email protected] Jason Flinn Satish Narayanasamy University of Michigan University of Michigan [email protected] [email protected] CCS Concepts • Theory of computation → Program anal- apply a much more precise, but unsound, static analysis that ysis; • Software and its engineering → Dynamic analysis; assumes these invariants hold true. Finally, we run the result- Software reliability; Software safety; Software testing and de- ing dynamic analysis speculatively while verifying whether bugging; the assumed invariants hold true during that particular exe- cution; if not, the program is reexecuted with a traditional ACM Reference Format: David Devecsery, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. hybrid analysis. 2018. Optimistic Hybrid Analysis: Accelerating Dynamic Analysis Optimistic hybrid analysis is as precise and sound as tradi- through Predicated Static Analysis. In ASPLOS ’18: 2018 Architec- tional dynamic analysis, but is typically much faster because tural Support for Programming Languages and Operating Systems, (1) unsound static analysis can speed up dynamic analysis March 24–28, 2018, Williamsburg, VA, USA. ACM, New York, NY, much more than sound static analysis can and (2) verifi- USA, 15 pages. https://doi.org/10.1145/3173162.3177153 cations rarely fail. We apply optimistic hybrid analysis to race detection and program slicing and achieve 1.8x over Abstract a state-of-the-art race detector (FastTrack) optimized with Dynamic analysis tools, such as those that detect data-races, traditional hybrid analysis and 8.3x over a hybrid backward verify memory safety, and identify information flow, have be- slicer (Giri).
    [Show full text]
  • Educational Goals for Embedded Systems in the Multicore Era
    AC 2009-414: EDUCATIONAL GOALS FOR EMBEDDED SYSTEMS IN THE MULTICORE ERA James Holt, Freescale Semiconductor, Inc. Jim leads the Multicore Design Evaluation team for Freescale’s NMG/NSD division. Jim has 27 years of industry experience focused on distributed systems, microprocessor and SoC architecture, design verification, and optimization. Jim is an IEEE Senior Member, and is a board member for the Multicore Association. He is also chair of the Integrated Systems & Circuits Science area for the Semiconductor Research Corporation (SRC), and chair of the Multicore Resource API Working group for the Multicore Association. Jim earned a Ph.D. in Electrical and Computer Engineering from the University of Texas at Austin, and an MS in Computer Science from Texas State University. Hongchi Shi, Texas State University, San Marcos Hongchi Shi is Professor and Chair of the Computer Science Department at Texas State University-San Marcos. Prior to joining Texas State University, he has been an Assistant/Associate/Full Professor of Computer Science and Electrical and Computer Engineering at the University of Missouri. He obtained his BS degree and MS degree in Computer Science and Engineering from Beijing University of Aeronautics and Astronautics in 1983 and 1986, respectively. He obtained his PhD degree in Computer and Information Sciences from the University of Florida in 1994. Hongchi Shi's research interests include parallel and distributed computing, wireless sensor networks, neural networks, and image processing. He has served on many organizing and/or technical program committees of international conferences in his research areas. He is a member of ACM and a senior member of IEEE.
    [Show full text]