Climacostol Inhibits Tetrahymena Motility and Mitochondrial Respiration

Total Page:16

File Type:pdf, Size:1020Kb

Climacostol Inhibits Tetrahymena Motility and Mitochondrial Respiration Cent. Eur. J. Biol. • 6(1) • 2011 • 99–104 DOI: 10.2478/s11535-010-0100-7 Central European Journal of Biology Climacostol inhibits Tetrahymena motility and mitochondrial respiration Research Article Yoshinori Muto1,*, Yumiko Tanabe2, Kiyoshi Kawai2, Yukio Okano3, Hideo Iio4 1Department of Functional Bioscience, Gifu University School of Medicine, 501-1193 Gifu, Japan 2Department of Nutrition, Faculty of Wellness, Chukyo Women’s University, 474-0011 Ohbu, Japan 3Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, 501-1194 Gifu, Japan 4Department of Material Science, Graduate School of Science, Osaka City University, 558-8585 Osaka, Japan Received 08 July 2010; Accepted 01 October 2010 Abstract: Climacostol is a resorcinol derivative that is produced by the ciliate Climacostomum virens. Exposure to purified climacostol results in lethal damage to the predatory ciliate Dileptus margaritifer and several other ciliates. To elucidate the mechanism of climacostol toxic action, we have investigated the effects of this compound on the swimming behavior of Tetrahymena thermophila and the respiratory system of isolated rat liver mitochondria. When added to living T. thermophila cells, climacostol markedly increased the turning frequency that was accompanied by a decrease in swimming velocity and subsequently by cell death. Observations by DIC and fluorescence microscopy showed morphological alterations in climacostol treated T. thermophila, indicating that climacostol might exert cytotoxic action on this organism. In the experiment with isolated rat liver mitochondria, climacostol was found to inhibit the NAD-linked respiration, but had no apparent effect on succinate-linked respiration. This finding indicates that climacostol specifically inhibits respiratory chain complex I in mitochondria. The combination of results suggest that the inhibition of mitochondrial respiration may be the cytotoxic mechanism of climacostol’s defenses against predatory protozoa. Keywords: Climacostol • Apoptosis • Complex I • Mitochondria • Reactive oxygen species • Tetrahymena © Versita Sp. z o.o. 1. Introduction correlated to the unsaturation level of its aliphatic chain [3]. The complete molecular structure of climacostol was The heterotrich ciliate, Climacostomum virens, has determined as 1,3-dihydroxy-5-[(Z)-2’-nonenyl]benzene numerous cortical granules containing a cytotoxic and it was chemically synthesized [1,4]. On the basis compound called climacostol [1]. This compound is of its chemical structure, climacostol is classified as used for chemical defense against predators such as a resorcinolic lipid, and is widely detected in plants, the raptorial ciliate Dileptus margaritifer and its cytotoxic fungi, algae, and bacteria [5,6], but only in one animal activity has been assessed on several species of ciliates species (a marine sponge) and in a ciliated protozoan such as Didinium nasutum, Paramecium caudatum, [7]. Some observations clearly suggested participation and Blepharisma japonicum [2]. Recent observations of resorcinolic lipids in the modulation of the host- on various ciliated protozoa further revealed that the pathogen relationship in plants [5]. Until now, however, cytotoxicity level of climacostol appears to be inversely the physiological role of the resorcinolic lipids has not * E-mail: [email protected] 99 Climacostol inhibits Tetrahymena motility and mitochondrial respiration been fully clarified and little is known about the cytotoxic (25 mm × 50 mm) and a smaller coverslip (18 mm ×18 mm) mechanisms of climacostol on the target organisms. by introducing 10 μm diameter polystyrene beads into the Among the ciliates, Tetrahymena has been medium. This assembly was then mounted on an Olympus convenient for cell biology studies because several IX70 inverted microscope equipped with high-resolution species are easily grown axenically [8]. They possess DIC and epifluorescence optics. highly evolved cytoarchitecture as well as an intracellular messenger system regulating various cell functions 2.4 Digital image processing [9,10]. Its ultrastructure, cell physiology, development, Measurement of the motility pattern was initiated biochemistry, genetics and molecular biology have by transferring 50 μl aliquot of the cell suspension been extensively studied [11-15]. Moreover, the motile into a plastic petri dish (φ33mm) containing 0.4 ml behavior of Tetrahymena in response to external of 10 mM Mops/Tris (pH 7.2) inorganic saline chemical stimuli is easily assessed and has been solution with and without a test substance (the used as a measure of the biological activity of various final cell density, approximately 1×105 cells/ml). chemicals [16-18], making it a suitable model cell After rapid mixing of the medium, time-lapse images system for analysis of the cytotoxic mechanisms of were obtained with a C5985 video camera (Hamamatsu climacostol. In the present study, we have undertaken Photonics, Japan) in darkfield illumination using an a series of investigations into the mode of action of inverted microscope with a ×4 objective lens [18,20]. climacostol on Tetrahymena thermophila cells and its Video signals were digitized by a personal computer with effects on the respiratory chain of rat liver mitochondria. an LG-3 frame grabber (Scion, USA) and then converted Our results show that climacostol inhibits the motility of to TIFF format. The images were recorded every 0.1 s T. thermophila remarkably and induces morphological for 1 min after the cell suspension was added. For changes of the cell, being dependent at least in part quantitative analysis of the swimming pattern, sequential on mitochondrial function. A part of this work has been cell video images were subjected to image processing published in the Proceedings of the annual meeting of including filtering as well as binary (i.e. black and white the Japan Society of Protozoology [19]. only) transformation. Ten successive images of the same field were then added and converted to one fused image to show the swimming tracks of T. thermophila. All image 2. Experimental Procedures processing was performed using the public domain NIH Image program (developed at the U.S. National 2.1 Cell culture Institutes of Health and available on the Internet at Tetrahymena thermophila B1868(mating type II) was http://rsb.info.nih.gov/nih-image/). grown axenically at 25°C in 1% (w/v) proteose peptone containing 1% (w/v) yeast extract and 0.87% (w/v) 2.5 Mitochondrial preparation and glucose without shaking. Cells were harvested during the measurement of respiration mid-log phase of growth (5×105 cells/ml) by centrifugation, Rat liver mitochondria were prepared by the method of washed and resuspended to 1×106 cells/ml in 10 mM Schneider [21] using 0.25 M sucrose solution containing Mops/Tris (pH 7.2) containing 1 mM KCl, 1 mM NaCl and 0.5 mM EDTA and 10 mM Tris-HCl (pH 7.4). The 1 mM CaCl2 (inorganic saline solution). Cells were then mitochondrial respiration was measured using a Galvani- equilibrated for more than 30 min prior to measurement. type oxygen electrode. The reaction medium was essentially composed of 0.15 M KCl, 5 mM MgCl2, 1 mM EDTA and 2.2 Climacostol 20 mM Tris-HCl in a final volume of 2 ml (pH 7.4). Reaction Chemically-synthesized climacostol [1] was dissolved was initiated after saturating O2 in the reaction medium in ethanol (5 mg/ml) and stored protected from light at 30°C and was carried out at the same temperature. at −20°C until use. The solution was diluted with an Submitochondrial particles (SMP) were prepared from rat appropriate experimental medium at the time of the liver mitochondria according to the procedure of Ruzicka experiment. For each experiment, corresponding volume [22]. The oxygen uptake of SMP was measured by the of the vehicle ethanol was added and measurement was same method used for mitochondria. Reaction medium performed as control. was essentially composed of 0.15 M KCl, 5 mM MgCl2, 5 mM inorganic phosphate, 0.5 mM EDTA, and 20 mM 2.3 Differential interference contrast (DIC) and Tris-HCl in a final volume of 1.9 ml (pH 7.4). The reaction fluorescence microscopy was performed at 30°C. The protein concentration was T. thermophila cells equilibrated in inorganic saline solution determined by the method of Lowry et al. [23], using bovine were slightly compressed between a large coverslip serum albumin as the standard protein. 100 Y. Muto et al. 3. Results of incubation in a solution of climacostol with a final concentration of 21 μM, T. thermophila cells initially 3.1 Motility changes of Tetrahymena lost their shape and became spherical (Figure 2A, thermophila induced by climacostol part b). Some cells were highly abnormal, exhibiting By regulating the frequency and direction of ciliary beat, cell lysis in which pellicle membranes were ruptured T. thermophila changes swimming patterns in response (Figure 2A, part c). Since almost all the cells became to various environmental stimuli. When observing the immobilized and spherical after exposure to 21 μM motility pattern of T. thermophila in darkfield illumination climacostol for 5 minutes, there might be no surviving with a microscope, it consists of smooth tracks (runs) cells in this condition. In Tetrahymena and related interrupted randomly by a turn which alters the direction ciliates, many of the mitochondria are located in the of motion (Figure 1A, part a). Incubating T. thermophila in cortex and are lined up parallel to the ciliary rows [13]. climacostol (21 μM) immediately increased
Recommended publications
  • The Macronuclear Genome of Stentor Coeruleus Reveals Tiny Introns in a Giant Cell
    University of Pennsylvania ScholarlyCommons Departmental Papers (Biology) Department of Biology 2-20-2017 The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Mark M. Slabodnick University of California, San Francisco J. G. Ruby University of California, San Francisco Sarah B. Reiff University of California, San Francisco Estienne C. Swart University of Bern Sager J. Gosai University of Pennsylvania See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/biology_papers Recommended Citation Slabodnick, M. M., Ruby, J. G., Reiff, S. B., Swart, E. C., Gosai, S. J., Prabakaran, S., Witkowska, E., Larue, G. E., Gregory, B. D., Nowacki, M., Derisi, J., Roy, S. W., Marshall, W. F., & Sood, P. (2017). The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell. Current Biology, 27 (4), 569-575. http://dx.doi.org/10.1016/j.cub.2016.12.057 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/biology_papers/49 For more information, please contact [email protected]. The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Abstract The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities—if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3].
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Wrc Research Report No. 131 Effects of Feedlot Runoff
    WRC RESEARCH REPORT NO. 131 EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA BY Kenneth S. Todd, Jr. College of Veterinary Medicine Department of Veterinary Pathology and Hygiene University of Illinois Urbana, Illinois 61801 FINAL REPORT PROJECT NO. A-074-ILL This project was partially supported by the U. S. ~epartmentof the Interior in accordance with the Water Resources Research Act of 1964, P .L. 88-379, Agreement No. 14-31-0001-7030. UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 AUGUST 1977 ABSTRACT Water samples and free-living and sessite ciliated protozoa were col- lected at various distances above and below a stream that received runoff from a feedlot. No correlation was found between the species of protozoa recovered, water chemistry, location in the stream, or time of collection. Kenneth S. Todd, Jr'. EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA Final Report Project A-074-ILL, Office of Water Resources Research, Department of the Interior, August 1977, Washington, D.C., 13 p. KEYWORDS--*ciliated protozoa/feed lots runoff/*water pollution/water chemistry/Illinois/surface water INTRODUCTION The current trend for feeding livestock in the United States is toward large confinement types of operation. Most of these large commercial feedlots have some means of manure disposal and programs to prevent runoff from feed- lots from reaching streams. However, there are still large numbers of smaller feedlots, many of which do not have adequate facilities for disposal of manure or preventing runoff from reaching waterways. The production of wastes by domestic animals was often not considered in the past, but management of wastes is currently one of the largest problems facing the livestock industry.
    [Show full text]
  • Effects of Macrophytes, Fish and Metazooplankton on a Microbial Food Web
    EFFECTS OF MACROPHYTES, FISH AND METAZOOPLANKTON ON A MICROBIAL FOOD WEB Veetaimestiku, kalade ja metazooplanktoni mõju mikroobsele toiduahelale KATRIT KARUS A Thesis For applying for the degree of Doctor of Philosophy in Hydrobiology Väitekiri Filosoofiadoktori kraadi taotlemiseks hüdrobioloogia erialal Tartu 2014 Eesti Maaülikooli doktoritööd Doctoral Thesis of the Estonian University of Life Sciences EFFECTS OF MACROPHYTES, FISH AND METAZOOPLANKTON ON A MICROBIAL FOOD WEB Veetaimestiku, kalade ja metazooplanktoni mõju mikroobsele toiduahelale KATRIT KARUS A Thesis For applying for the degree of Doctor of Philosophy in Hydrobiology Väitekiri Filosoofi adoktori kraadi taotlemiseks hüdrobioloogia erialal Tartu 2014 Institute of Agricultural and Environmental Sciences Estonian University of Life Sciences According to verdict No 195 of July 4, 2014 the Doctoral Committee for Agricultural and Natural Sciences of the Estonian University of Life Sciences has accepted the thesis for the defence of the degree of Doctor of Philosophy in Hydrobiology. Opponent: Jouko Sarvala, Professor Emeritus Department of Biology, University of Turku, Finland Supervisor: Priit Zingel, PhD Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences Reviewer: Priit Zingel, PhD Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences Defence of the thesis: Estonian University of Life Sciences, Kreutzwaldi 5 (room 1A5), Tartu, on August 28, 2014, at 10:00. The English language was edited by T M B G Editing, United Kingdom and Estonian language by Priit Zingel. Copyrighted papers in this dissertation are reproduced by courtesy of the Elsevier; John Wiley & Sons Inc. and Association for the Sciences of Limnology and Oceanography, Inc.
    [Show full text]
  • Pusillus Poseidon's Guide to Protozoa
    Pusillus Poseidon’s guide to PROTOZOA GENERAL NOTES ABOUT PROTOZOANS Protozoa are also called protists. The word “protist” is the more general term and includes all types of single-celled eukaryotes, whereas “protozoa” is more often used to describe the protists that are animal-like (as opposed to plant-like or fungi-like). Protists are measured using units called microns. There are 1000 microns in one millimeter. A millimeter is the smallest unit on a metric ruler and can be estimated with your fingers: The traditional way of classifying protists is by the way they look (morphology), by the way they move (mo- tility), and how and what they eat. This gives us terms such as ciliates, flagellates, ameboids, and all those colors of algae. Recently, the classification system has been overhauled and has become immensely complicated. (Infor- mation about DNA is now the primary consideration for classification, rather than how a creature looks or acts.) If you research these creatures on Wikipedia, you will see this new system being used. Bear in mind, however, that the categories are constantly shifting as we learn more and more about protist DNA. Here is a visual overview that might help you understand the wide range of similarities and differences. Some organisms fit into more than one category and some don’t fit well into any category. Always remember that classification is an artificial construct made by humans. The organisms don’t know anything about it and they don’t care what we think! CILIATES Eats anything smaller than Blepharisma looks slightly pink because it Blepharisma itself, even smaller Bleph- makes a red pigment that senses light (simi- arismas.
    [Show full text]
  • A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W
    diversity Article A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece) George N. Hotos Plankton Culture Laboratory, Department of Animal Production, Fisheries & Aquaculture, University of Patras, 30200 Messolonghi, Greece; [email protected] Abstract: During a survey in 2015, an impressive assemblage of organisms was found in a hypersaline pond of the Messolonghi saltworks. The salinity ranged between 50 and 180 ppt, and the organisms that were found fell into the categories of Cyanobacteria (17 species), Chlorophytes (4 species), Diatoms (23 species), Dinoflagellates (1 species), Protozoa (40 species), Rotifers (8 species), Copepods (1 species), Artemia sp., one nematode and Alternaria sp. (Fungi). Fabrea salina was the most prominent protist among all samples and salinities. This ciliate has the potential to be a live food candidate for marine fish larvae. Asteromonas gracilis proved to be a sturdy microalga, performing well in a broad spectrum of culture salinities. Most of the specimens were identified to the genus level only. Based on their morphology, as there are no relevant records in Greece, there is a possibility for some to be either new species or strikingly different strains of certain species recorded elsewhere. Keywords: protists; cyanobacteria; rotifers; crustacea; hypersaline conditions; Messolonghi saltworks 1. Introduction Citation: Hotos, G.N. A Preliminary It is well known that saltwork waters support high algal densities due to the abun- Survey on the Planktonic Biota in a dance of nutrients concentrated by evaporation [1–3]. Apart from the fact that such Hypersaline Pond of Messolonghi ecosystems are of paramount ecological value, they are also a potential source for tolerant Saltworks (W.
    [Show full text]
  • Macronuclear DNA in Stentor Coeruleus: a First Approach to Its Characterization
    Genet. Res., Camb. (1976), 27, pp. 277-289 277 With 2 plates and 5 text-figures Printed in Great Britain Macronuclear DNA in Stentor coeruleus: a first approach to its characterization BY B. PELVAT AND G. DE HALLER Laboratoire de Biologie des Protistes, Departement de Biologie Animale, Universite de Geneve, 1211 Geneve 4 (Suisse) (Received 10 October 1975) SUMMARY The macronuclei of Stentor coeruleus were isolated on a discontinuous sucrose gradient and their DNA was purified by conventional methods. The GC content was 32 mole %. The DNA banded as a single peak on analytical ultracentrifugation at 1-691 g/cm3. The molecular weight of the DNA was 5 x 106 to 4 x 107 daltons. Genome size determined by DNA- DNA reassociation kinetics was 6 x 1010 daltons. The macronuclear genome was mostly simple, about 85 % being made of non-repetitive sequences. 1. INTRODUCTION Stentor coeruleus is a common freshwater protozoan which contains two different types of nuclei: a nodular macronucleus and several micronuclei (Plate 1, fig. 1). In a general way, genetic continuity is maintained in ciliates by the micronucleus through mitosis and conjugation. In heterotrichs, micronuclear function and formation of the macronucleus is not well understood. Conjugation is observed in Blepharisma (Giese, 1973; Miyake & Beyer, 1973). In Spirostomum, conjugation is rare, but macronuclear development with well-organized chromosomes has been described by Rao (1968). Little information is available for Stentor coeruleus. In this species, conjugation is a very rare event (Plate 1, fig. 2) (Tartar, 1961). It sometimes appears in laboratory cultures, but no reproducible method for inducing it has been reported.
    [Show full text]
  • Systematic Index
    Systematic Index The systematic index contains the scientific names of all taxa mentioned in the book e.g., Anisonema sp., Anopheles and the vernacular names of protists, for example, tintinnids. The index is two-sided, that is, species ap - pear both with the genus-group name first e.g., Acineria incurvata and with the species-group name first ( incurvata , Acineria ). Species and genera, valid and invalid, are in italics print. The scientific name of a subgenus, when used with a binomen or trinomen, must be interpolated in parentheses between the genus-group name and the species- group name according to the International Code of Zoological Nomenclature. In the following index, these paren - theses are omitted to simplify electronic sorting. Thus, the name Apocolpodidium (Apocolpodidium) etoschense is list - ed as Apocolpodidium Apocolpodidium etoschense . Note that this name is also listed under “ Apocolpodidium etoschense , Apocolpodidium ” and “ etoschense , Apocolpodidium Apocolpodidium ”. Suprageneric taxa, communities, and vernacular names are represented in normal type. A boldface page number indicates the beginning of a detailed description, review, or discussion of a taxon. f or ff means include the following one or two page(s), respectively. A Actinobolina vorax 84 Aegyriana paroliva 191 abberans , Euplotes 193 Actinobolina wenrichii 84 aerophila , Centropyxis 87, 191 abberans , Frontonia 193 Actinobolonidae 216 f aerophila sphagnicola , Centropyxis 87 abbrevescens , Deviata 140, 200, 212 Actinophrys sol 84 aerophila sylvatica
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest
    Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest Abboudi, M., Jeffrey, W. H., Ghiglione, J. F., Pujo-Pay, M., Oriol, L., Sempéré, R., . Joux, F. (2008). Effects of photochemical transformations of dissolved organic matter on bacterial metabolism and diversity in three contrasting coastal sites in the northwestern Mediterranean Sea during summer. Microbial Ecology, 55(2), 344-357. Abboudi, M., Surget, S. M., Rontani, J. F., Sempéré, R., & Joux, F. (2008). Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth. Current Microbiology, 57(5), 412-417. doi: 10.1007/s00284-008-9214-9 Abernathy, J. W., Xu, P., Xu, D. H., Kucuktas, H., Klesius, P., Arias, C., & Liu, Z. (2007). Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis BMC Genomics, 8, 176. Abseck, S., Andrady, A. L., Arnold, F., Björn, L. O., Bomman, J. F., Calamari, D., . Zepp, R. G. (1998). Environmental effects of ozone depletion: 1998 assessment. Journal of Photochemistry and Photobiology B: Biology, 46(1-3), 1-108. doi: Doi: 10.1016/s1011-1344(98)00195-x Adachi, K., Kato, K., Wakamatsu, K., Ito, S., Ishimaru, K., Hirata, T., . Kumai, H. (2005). The histological analysis, colorimetric evaluation, and chemical quantification of melanin content in 'suntanned' fish. Pigment Cell Research, 18, 465-468. Adams, M. J., Hossaek, B. R., Knapp, R. A., Corn, P. S., Diamond, S. A., Trenham, P. C., & Fagre, D. B. (2005). Distribution Patterns of Lentic-Breeding Amphibians in Relation to Ultraviolet Radiation Exposure in Western North America. Ecosystems, 8(5), 488-500. Adams, N.
    [Show full text]
  • Report on the 2015 Workshop of the International Research
    Acta Protozool. (2016) 55: 119–121 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.16.011.4946 PROTOZOOLOGICA Report on the 2015 workshop of the International Research Coordination Network for Biodiversity of Ciliates (IRCN-BC) held at Ocean University of China (OUC), Qingdao, China, 19–21 October 2015 Alan WARREN1, Nettie McMILLER2, Lúcia SAFI3, Xiaozhong HU4, Jason TARKINGTON5 1 Department of Life Sciences, Natural History Museum, London SW7 5BD, UK; 2 North Carolina Central University, Durham, NC27707, USA; 3 Virginia Institute of Marine Science, Gloucester Point, VA23062, USA; 4 Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; 5Department of Biology and Biochemistry, University of Houston, Houston, TX77023, USA The 4th workshop of the IRCN-BC, entitled ‘Cur- were recorded for the first time in the South China Sea rent Trends, Collaborations and Future Directions including two new strombidiid genera. The coastal wa- in Biodiversity Studies of Ciliates’ and convened by ters of the South China Sea are also the location of the Weibo Song and colleagues at OUC, was attended by last remaining mangrove wetlands in China. Xiaofeng 53 participants from 12 countries. The workshop com- Lin (South China Normal University) reported the dis- prised oral presentations and posters grouped into three covery of > 200 ciliate species, including 60 new spe- themes reflecting the three dimensions of biodiversity, cies and one new family, from three such wetlands over namely: taxonomic diversity, ecological diversity and the past decade, whereas previously < 20 spp. had been genetic diversity. The main aims of the workshop were recorded from all of China’s mangroves.
    [Show full text]