Table 3B Last Updated: 14 November 2018

Total Page:16

File Type:pdf, Size:1020Kb

Table 3B Last Updated: 14 November 2018 IUCN Red List version 2018-2: Table 3b Last Updated: 14 November 2018 Table 3b: Status category summary by major taxonomic group (plants) Subtotal** Subtotal Subtotal Class* EX EW CR(PE)** CR(PEW)** (EX+EW+ CR EN VU NT LR/cd DD LC Total (EX+EW) (threatened spp.) CR(PE)+CR(PEW)) ANTHOCEROTOPSIDA 0 0 0 0 0 0 0 2 0 2 0 0 0 0 2 BRYOPSIDA 2 0 2 0 0 2 12 13 7 32 1 0 3 3 41 CHAROPHYACEAE 0 0 0 0 0 0 0 0 0 0 0 0 3 8 11 CHLOROPHYCEAE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 CYCADOPSIDA 0 4 4 4 0 8 53 65 74 192 63 0 3 45 307 FLORIDEOPHYCEAE 1 0 1 2 0 3 6 0 3 9 0 0 44 4 58 GINKGOOPSIDA 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 GNETOPSIDA 0 0 0 0 0 0 0 1 3 4 7 0 10 76 97 JUNGERMANNIOPSIDA 1 0 1 0 0 1 10 11 12 33 1 0 0 10 45 LILIOPSIDA 9 4 13 60 2 75 501 812 717 2,030 352 10 669 2,585 5,659 LYCOPODIOPSIDA 0 0 0 2 0 2 13 11 16 40 9 0 8 29 86 MAGNOLIOPSIDA 107 26 133 129 17 279 2,192 3,453 4,889 10,534 1,372 174 1,456 6,443 20,112 MARCHANTIOPSIDA 0 0 0 0 0 0 1 3 2 6 0 0 4 1 11 PINOPSIDA 0 0 0 1 0 1 29 96 79 204 98 0 7 298 607 POLYPODIOPSIDA 2 1 3 8 0 11 62 69 78 209 26 0 54 180 472 SPHAGNOPSIDA 0 0 0 0 0 0 0 0 2 2 0 0 0 0 2 TAKAKIOPSIDA 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 ULVOPHYCEAE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 Total 122 35 157 206 19 382 2,879 4,537 5,883 13,299 1,929 184 2,263 9,682 27,514 IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered (includes CR(PE) and CR(PEW)), EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). * Plants: Anthocerotopsida (hornworts); Bryopsida, Sphagnopsida and Takakiopsida (true mosses); Charophyaceae, Chlorophyceae and Ulvophyceae (green algae); Cycadopsida (cycads); Florideophyceae (red algae); Ginkgoopsida (ginkgo); Gnetopsida (gnetums); Jungermanniopsida and Marchantiopsida (liverworts); Liliopsida (monocotyledons); Lycopodiopsida (club mosses and spike mosses); Magnoliopsida (dicotyledons); Polypodiopsida (ferns, horsetails & quillworts); Pinopsida (conifers). ** CR(PE) & CR(PEW): The tags 'Possibly Extinct' and 'Possibly Extinct in the Wild' have been developed to identify CR species that are likely already extinct (or extinct in the wild), but require more investigation to confirm this. NOTE that these are not IUCN Red List Categories; they are tags that can be attached to the CR category to highlight those taxa that are possibly extinct. They are included in the above table to indicate a plausible upper estimate for number of recently extinct species on The IUCN Red List. For the full list of CR(PE) and CR(PEW) species in the current IUCN Red List, see Table 9..
Recommended publications
  • RI Equisetopsida and Lycopodiopsida.Indd
    IIntroductionntroduction byby FFrancisrancis UnderwoodUnderwood Rhode Island Equisetopsida, Lycopodiopsida and Isoetopsida Special Th anks to the following for giving permission for the use their images. Robbin Moran New York Botanical Garden George Yatskievych and Ann Larson Missouri Botanical Garden Jan De Laet, plantsystematics.org Th is pdf is a companion publication to Rhode Island Equisetopsida, Lycopodiopsida & Isoetopsida at among-ri-wildfl owers.org Th e Elfi n Press 2016 Introduction Formerly known as fern allies, Horsetails, Club-mosses, Fir-mosses, Spike-mosses and Quillworts are plants that have an alternate generation life-cycle similar to ferns, having both sporophyte and gametophyte stages. Equisetopsida Horsetails date from the Devonian period (416 to 359 million years ago) in earth’s history where they were trees up to 110 feet in height and helped to form the coal deposits of the Carboniferous period. Only one genus has survived to modern times (Equisetum). Horsetails Horsetails (Equisetum) have jointed stems with whorls of thin narrow leaves. In the sporophyte stage, they have a sterile and fertile form. Th ey produce only one type of spore. While the gametophytes produced from the spores appear to be plentiful, the successful reproduction of the sporophyte form is low with most Horsetails reproducing vegetatively. Lycopodiopsida Lycopodiopsida includes the clubmosses (Dendrolycopodium, Diphasiastrum, Lycopodiella, Lycopodium , Spinulum) and Fir-mosses (Huperzia) Clubmosses Clubmosses are evergreen plants that produce only microspores that develop into a gametophyte capable of producing both sperm and egg cells. Club-mosses can produce the spores either in leaf axils or at the top of their stems. Th e spore capsules form in a cone-like structures (strobili) at the top of the plants.
    [Show full text]
  • The Origin and Early Evolution of Plants on Land
    review article The origin and early evolution of plants on land Paul Kenrick & Peter R. Crane . The origin and early evolution of land plants in the mid-Palaeozoic era, between about 480 and 360 million years ago, was an important event in the history of life, with far-reaching consequences for the evolution of terrestrial organisms and global environments. A recent surge of interest, catalysed by palaeobotanical discoveries and advances in the systematics of living plants, provides a revised perspective on the evolution of early land plants and suggests new directions for future research. The origin and early diversification of land plants marks an interval Eoembryophytic (mid-Ordovician [early Llanvirn: ϳ476 Myr] to of unparalleled innovation in the history of plant life. From a simple Early Silurian [late Llandovery: ϳ432 Myr])3. Spore tetrads (com- plant body consisting of only a few cells, land plants (liverworts, prising four membrane-bound spores; Fig. 2d) appear over a broad hornworts, mosses and vascular plants) evolved an elaborate two- geographic area in the mid-Ordovician and provide the first good phase life cycle and an extraordinary array of complex organs and evidence of land plants3,26,29. The combination of a decay-resistant tissue systems. Specialized sexual organs (gametangia), stems with wall (implying the presence of sporopollenin) and tetrahedral an intricate fluid transport mechanism (vascular tissue), structural configuration (implying haploid meiotic products) is diagnostic tissues (such as wood), epidermal structures for respiratory gas of land plants. The precise relationships of the spore producers exchange (stomates), leaves and roots of various kinds, diverse within land plants are controversial, but evidence of tetrads and spore-bearing organs (sporangia), seeds and the tree habit had all other spore types (such as dyads) in Late Silurian and Devonian evolved by the end of the Devonian period.
    [Show full text]
  • A Revision of Schoenobryum (Cryphaeaceae, Bryopsida) in Africa1
    Revision of Schoenobryum 147 Tropical Bryology 24: 147-159, 2003 A revision of Schoenobryum (Cryphaeaceae, Bryopsida) in Africa1 Brian J. O’Shea 141 Fawnbrake Avenue, London SE24 0BG, U.K. Abstract. The nine species and two varieties of Schoenobryum reported for Africa were investigated, and no characters were found that uniquely identified any of the taxa to be other than the pantropical Schoenobryum concavifolium. The following nine names become new synonyms of S. concavifolium: Cryphaea madagassa, C. subintegra, Acrocryphaea robusta, A. latifolia, A. subrobusta, A. tisserantii, A. latifolia var. microspora, A. plicatula and A. subintegra var. idanreense; a lectotype is selected for Acrocryphaea latifolia var. microspora P.de la Varde. INTRODUCTION as the majority have not been examined since the type description, and many have never been A recent checklist of Sub-Saharan Africa illustrated. (O’Shea, 1999) included nine species and two varieties of Schoenobryum, most of quite limited The purpose of this paper is to provide an distribution. Recent collecting in both Malawi overview of the genus worldwide, and to review (O’Shea et al., 2001) and Uganda (Wigginton et the taxonomic position of the African taxa. al., 2001) has shown the genus to be not uncommon, although there was only one CRYPHAEACEAE SCHIMP. 1856. previously published collection from the two countries (O’Shea, 1993). Apart from one Cryphaeaceae Schimp., Coroll. Bryol. Eur. 97. African taxon occurring in nine countries, the 1856 [‘1855’]. Type: Cryphaea D.Mohr in other 10 occurred in an average of 1.7 countries. F.Weber This particular profile is typical of unrevised genera in Africa, and indicative of a possible A brief review of the circumscription and need for revision (O’Shea, 1997), particularly systematics of the family, and the distinctions from related families (e.g.
    [Show full text]
  • Introduction to Botany. Lecture 29
    Kingdom Vegetabilia: plants Introduction to Botany. Lecture 29 Alexey Shipunov Minot State University November 12th, 2010 Shipunov BIOL 154.29 Kingdom Vegetabilia: plants Outline 1 Kingdom Vegetabilia: plants Bryophyta: mosses Pteridophyta: ferns and allies Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Life cycle of mosses (picture from the board) Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Three main groups (subphyla) Hepaticae—liverworts. Three classes, most primitive are Haplomitriopsida. Body has dorsal and ventral parts, sporogon bag-like, without columella, spores with elaters. Bryophytina—true mosses. Six classes, most important are Sphagnopsida (peat mosses), Polytrichopsida (haircap mosses) and Bryopsida. Body radial, sporogon long, with columella, spores without elaters. Anthocerotophytina—hornworts. One class. Body flattened, sporogon long, green, with columella and stomata, spores with elaters. Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Haplomitrium gibbsiae, primitive liverwort Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Elaters of liverworts (Lepidozia sp.) Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Sphagnum sp. (Bryophyta, Sphagnopsida) with sporogons Shipunov BIOL 154.29 Bryophyta: mosses Kingdom Vegetabilia: plants Pteridophyta: ferns and allies Dawsonia
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Anthocerotophyta
    Glime, J. M. 2017. Anthocerotophyta. Chapt. 2-8. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-8-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 5 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-8 ANTHOCEROTOPHYTA TABLE OF CONTENTS Anthocerotophyta ......................................................................................................................................... 2-8-2 Summary .................................................................................................................................................... 2-8-10 Acknowledgments ...................................................................................................................................... 2-8-10 Literature Cited .......................................................................................................................................... 2-8-10 2-8-2 Chapter 2-8: Anthocerotophyta CHAPTER 2-8 ANTHOCEROTOPHYTA Figure 1. Notothylas orbicularis thallus with involucres. Photo by Michael Lüth, with permission. Anthocerotophyta These plants, once placed among the bryophytes in the families. The second class is Leiosporocerotopsida, a Anthocerotae, now generally placed in the phylum class with one order, one family, and one genus. The genus Anthocerotophyta (hornworts, Figure 1), seem more Leiosporoceros differs from members of the class distantly related, and genetic evidence may even present
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • 1 Crum, Howard. Mosses of the Great Lakes Forest. Fourth Edition. 2004. Viii + 592 Pages
    125 BOOK REVIEW 2007 - #1 Crum, Howard. Mosses of the Great Lakes Forest. Fourth Edition. 2004. viii + 592 pages; introduction; dichotomous keys; illustrations; taxonomic descriptions; black and white photographs; glossary; index to Latin names. University of Michigan Herbarium, Ann Arbor, Michigan. Hard Cover. ISBN: 0-9620733-6-3. Price: US $40.00. Available from University of Michigan Herbarium, Publications, 3600 Varsity Drive, Ann Arbor, MI 48108-2287. The highly respected bryologist, Howard Crum, died in April 2002 before he could com- plete the fourth edition of his important and useful set of manuals entitled Mosses of the Great Lakes Forest (1973, 1976, and 1983). But fortunately and thankfully, William C. Buck and Christiane Anderson took on the task of editing and seeing Crum’s beautiful fourth edition to completion. Although the title, Mosses of the Great Lakes Forest, indicates a regional moss flora, the manual has a much broader application and can serve as an effective introductory taxo- nomic manual for the identification of mosses in the northeastern United States. In this respect, it is a handy companion to the more comprehensive two volume taxonomic pub- lication entitled Mosses of Eastern North America (Crum and Anderson, 1981). A significant feature following the introduction of Mosses of the Great Lakes Forest is the dichotomous key to genera treated in the manual; a feature not found in Mosses of Eastern North America. Descriptive materials (including illustrations) follow, with 545 pages for moss species of two divisions; Sphagnophyta (Peat Mosses) and Bryophyta with two classes Andreaeopsida (Granite Mosses) and Bryopsida (True Mosses). Following a description and noteworthy comments about the Sphagnophyta, and hence the only family Sphagnaceae, is a key to species of the single genus Sphagnum (pp.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]
  • Introduction to Botany. Lecture 35
    Questions and answers Spermatophyta, seed plants Introduction to Botany. Lecture 35 Alexey Shipunov Minot State University November 28, 2011 Shipunov BIOL 154.35 Questions and answers Spermatophyta, seed plants Outline 1 Questions and answers 2 Spermatophyta, seed plants Classes of seed plants Conifers Gnetophytes Shipunov BIOL 154.35 Questions and answers Spermatophyta, seed plants Outline 1 Questions and answers 2 Spermatophyta, seed plants Classes of seed plants Conifers Gnetophytes Shipunov BIOL 154.35 Leaves-emergencies Leaves of lycopods Questions and answers Spermatophyta, seed plants Previous final question: the answer What are microphylls? Shipunov BIOL 154.35 Questions and answers Spermatophyta, seed plants Previous final question: the answer What are microphylls? Leaves-emergencies Leaves of lycopods Shipunov BIOL 154.35 Questions and answers Spermatophyta, seed plants Pteridophyta classes 1 2 3 4 5 6 7 8 9 10 Lycopodiopsida 1 0 0 1 0 0 1 1 0 0 Equisetopsida 0 1 0 1 0 1 0 1 0 1 Psilotopsida 0 1 1 0 0 0 0 0 0 1 Ophioglossopsida 0 1 0 0 0 0 1 0 0 0 Marattiopsida 0 1 1 0 0 1 0 1 1 0 Pteridopsida 1 1 0 0 1 1 0 1 1 0 1 Big (> 1,000 species); 2 Megaphyllous; 3 Synangia; 4 Strobilus; 5 Leptosporangia; 6 Terrestrial gametophyte; 7 Biflagellate sperm; 8 Roots; 9 Fronds; 10 Reduced leaves (enatia and scales). Characters are not necessary relevant to all members of class. Shipunov BIOL 154.35 Classes of seed plants Questions and answers Conifers Spermatophyta, seed plants Gnetophytes Spermatophyta, seed plants Classes of seed plants Shipunov BIOL 154.35 Classes of seed plants Questions and answers Conifers Spermatophyta, seed plants Gnetophytes Spermatophyta: seed plants ≈ 600 species of non-angiosperms and ≈ 250; 000 species of angiosperms Sporic life cycle with sporophyte predominance and seed Gametophyte is reduced to cells inside ovule or inside pollen grain.
    [Show full text]
  • Plan Docente Curso 2021-22 P/CL009 D002 BTC Facultad De Ciencias
    PROCESO DE COORDINACIÓN DE ENSEÑANZAS DE LA FACULTAD DE CIENCIAS DE LA UEx (P/CL009_FC) Asunto: Código: Plan docente Curso 2021-22 P/CL009_D002_BTC Facultad de Ciencias PLAN DOCENTE DE LA ASIGNATURA Curso académico: 2021/2022 Identificación y características de la asignatura Código 502671 Créditos ECTS 6 Denominación Biología Vegetal (español) Denominación (inglés) Vegetal Biology Titulación Grado en Biotecnología Centro FACULTAD DE CIENCIAS Semestre 2 Carácter Obligatoria Módulo Formación Básica Materia Biología Profesor/es Nombre Despacho Correo-e Página web Trinidad Ruiz Téllez DBo2 [email protected] Área de conocimiento Botánica Departamento Biología Vegetal, Ecología y Ciencias de la Tierra Profesor coordinador (si hay más de uno) Competencias COMPETENCIAS BÁSICAS CB1 - Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una
    [Show full text]
  • Volume 1, Chapter 2-7: Bryophyta
    Glime, J. M. 2017. Bryophyta – Bryopsida. Chapt. 2-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-7-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 10 January 2019 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-7 BRYOPHYTA – BRYOPSIDA TABLE OF CONTENTS Bryopsida Definition........................................................................................................................................... 2-7-2 Chromosome Numbers........................................................................................................................................ 2-7-3 Spore Production and Protonemata ..................................................................................................................... 2-7-3 Gametophyte Buds.............................................................................................................................................. 2-7-4 Gametophores ..................................................................................................................................................... 2-7-4 Location of Sex Organs....................................................................................................................................... 2-7-6 Sperm Dispersal .................................................................................................................................................. 2-7-7 Release of Sperm from the Antheridium.....................................................................................................
    [Show full text]