Table 4B: Red List Category Summary for All Plant Classes and Families

Total Page:16

File Type:pdf, Size:1020Kb

Table 4B: Red List Category Summary for All Plant Classes and Families IUCN Red List version 2019-3: Table 4b Last updated: 25 February 2020 Table 4b: Red List Category summary for all plant classes and families Erratum: The figures in the 'Subtotal' rows for Byopsida, Jungermanniopsida, and Magnoliopsida, and the final 'Total' row have been corrected; previously these missed out figures from some rows in this table. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered (includes CR(PE) and CR(PEW)), EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). * CR(PE) & CR(PEW): The tags 'Possibly Extinct' and 'Possibly Extinct in the Wild' have been developed to identify CR species that are likely already extinct (or extinct in the wild), but require more investigation to confirm this. NOTE that these are not IUCN Red List Categories; they are tags that can be attached to the CR category to highlight those taxa that are possibly extinct. They are included in the above table to indicate a plausible upper estimate for number of recently extinct species on The IUCN Red List. For the full list of CR(PE) and CR(PEW) species in the current IUCN Red List, see Table 9. Class ANDREAEOPSIDA Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) ANDREAEACEAE 0 0 0 0 0 0 0 0 1 1 0 0 1 0 2 Subtotal (Andreaeopsida) 0 0 0 00 0 001 10010 2 Class ANTHOCEROTOPSIDA Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) ANTHOCEROTACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 DENDROCEROTACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 Subtotal (Anthocerotopsida) 0 0 0 00 0 020 20000 2 Class BRYOPSIDA Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) AMBLYSTEGIACEAE 0 0 0 0 0 0 2 2 1 5 0 0 2 0 7 ARCHIDIACEAE 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 BARTRAMIACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 1 2 BRACHYTHECIACEAE 2 0 2 0 0 2 0 4 5 9 2 0 2 4 19 BRUCHIACEAE 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 BRYACEAE 0 0 0 0 0 0 0 1 2 3 2 0 2 2 9 BRYOXIPHIACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 CINCLIDOTACEAE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 CRYPHAEACEAE 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 DALTONIACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 DICRANACEAE 0 0 0 0 0 0 0 1 0 1 1 0 0 2 4 DITRICHACEAE 0 0 0 0 0 0 1 2 0 3 1 0 0 0 4 ECHINODIACEAE 0 0 0 0 0 0 0 2 1 3 0 0 0 0 3 FISSIDENTACEAE 1 0 1 0 0 1 3 1 0 4 2 0 0 1 8 FONTINALACEAE 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) FUNARIACEAE 0 0 0 0 0 0 0 1 0 1 1 0 0 1 3 GRIMMIACEAE 0 0 0 0 0 0 2 1 6 9 1 0 2 3 15 HYPNACEAE 0 0 0 0 0 0 2 0 1 3 1 0 2 1 7 LEMBOPHYLLACEAE 0 0 0 0 0 0 1 0 1 2 0 0 0 0 2 LEPTODONTACEAE 0 0 0 0 0 0 1 0 1 2 0 0 0 0 2 LESKEACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 LEUCOBRYACEAE 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 LEUCODONTACEAE 0 0 0 0 0 0 0 0 1 1 1 0 0 0 2 LEUCOMIACEAE 0 0 0 0 0 0 0 0 1 1 1 0 0 0 2 MNIACEAE 0 0 0 0 0 0 0 0 1 1 0 0 0 1 2 MYRINIACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 MYURIACEAE 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 NECKERACEAE 1 0 1 0 0 1 4 3 2 9 1 0 0 0 11 ORTHODONTIACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 ORTHOTRICHACEAE 0 0 0 0 0 0 3 2 1 6 0 0 1 3 10 PILOTRICHACEAE 0 0 0 0 0 0 2 0 0 2 0 0 0 0 2 POTTIACEAE 0 0 0 0 0 0 1 4 7 12 3 0 5 7 27 PTERIGYNANDRACEAE 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 PTEROBRYACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 PTYCHOMITRIACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 1 2 PYLAISIADELPHACEAE 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 RHABDOWEISIACEAE 0 0 0 0 0 0 0 0 0 0 1 0 0 3 4 RHACHITHECIACEAE 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 SELIGERIACEAE 0 0 0 0 0 0 0 1 1 2 0 0 0 1 3 SEMATOPHYLLACEAE 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 SPLACHNACEAE 0 0 0 0 0 0 0 2 0 2 0 0 0 0 2 THUIDIACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 Subtotal (Bryopsida) 4 0 4 0 0 4 24 36 33 93 22 0 17 35 171 Class CHAROPHYACEAE Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) CHARACEAE 0 0 0 0 0 0 0 0 0 0 0 0 3 8 11 Subtotal (Charophyaceae) 0 0 0 00 0 000 00038 11 Class CHLOROPHYCEAE Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) CHAETOPHORACEAE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 Subtotal (Chlorophyceae) 0 0 0 00 0 000 00010 1 Class CYCADOPSIDA Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) CYCADACEAE 0 0 0 0 0 0 11 16 30 57 24 0 2 15 98 STANGERIACEAE 0 0 0 0 0 0 0 0 1 1 0 0 0 2 3 ZAMIACEAE 0 4 4 0 0 4 42 49 43 134 39 0 1 28 206 Subtotal (Cycadopsida) 0 4 4 00 4 53 65 74 192 63 0 3 45 307 Class FLORIDEOPHYCEAE Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) BONNEMAISONIACEAE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 CERAMIACEAE 0 0 0 0 0 0 0 0 0 0 0 0 7 1 8 CORALLINACEAE 0 0 0 0 0 0 0 0 0 0 0 0 11 0 11 DELESSERIACEAE 1 0 1 0 0 1 2 0 3 5 0 0 2 0 8 GALAXAURACEAE 0 0 0 0 0 0 1 0 0 1 0 0 1 0 2 GIGARTINACEAE 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 GRACILARIACEAE 0 0 0 0 0 0 1 0 0 1 0 0 1 0 2 HALYMENIACEAE 0 0 0 0 0 0 0 0 0 0 0 0 3 1 4 HAPALIDIACEAE 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 KALLYMENIACEAE 0 0 0 0 0 0 0 0 0 0 0 0 2 1 3 PHYLLOPHORACEAE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 RHIZOPHYLLIDACEAE 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 RHODOMELACEAE 0 0 0 0 0 0 1 0 0 1 0 0 7 0 8 RHODYMENIACEAE 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 SCHIZYMENIACEAE 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 SEBDENIACEAE 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 Subtotal (Florideophyceae) 1 0 1 00 1 6 0 3 9 0 044 4 58 Class GINKGOOPSIDA Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) GINKGOACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 Subtotal (Ginkgoopsida) 0 0 0 00 0 010 10000 1 Class GNETOPSIDA Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) EPHEDRACEAE 0 0 0 0 0 0 0 0 0 0 1 0 4 51 56 GNETACEAE 0 0 0 0 0 0 0 1 3 4 6 0 6 25 41 Subtotal (Gnetopsida) 0 0 0 00 0 0 1 3 4 7 01076 97 Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) Class JUNGERMANNIOPSIDA Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) ACROBOLBACEAE 0 0 0 0 0 0 0 2 1 3 0 0 0 0 3 CALYPOGEIACEAE 0 0 0 0 0 0 0 1 1 2 0 0 0 0 2 CEPHALOZIACEAE 0 0 0 0 0 0 0 0 2 2 0 0 0 0 2 CEPHALOZIELLACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 1 2 FOSSOMBRONIACEAE 0 0 0 0 0 0 0 0 0 0 0 0 1 3 4 FRULLANIACEAE 0 0 0 0 0 0 0 0 2 2 1 0 0 2 5 GYMNOMITRIACEAE 0 0 0 0 0 0 0 0 1 1 1 0 0 2 4 HERBERTACEAE 0 0 0 0 0 0 0 1 2 3 1 0 0 0 4 JAMESONIELLACEAE 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 JUNGERMANNIACEAE 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 LEJEUNEACEAE 0 0 0 0 0 0 5 9 5 19 1 0 0 2 22 LEPIDOZIACEAE 0 0 0 0 0 0 2 2 0 4 0 0 0 2 6 LOPHOCOLEACEAE 0 0 0 0 0 0 0 0 0 0 1 0 1 1 3 METZGERIACEAE 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 PERSONIELLACEAE 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 PETALOPHYLLACEAE 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 PHYCOLEPIDOZIACEAE 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 PLAGIOCHILACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 3 4 PLEUROZIACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 1 2 PORELLACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 RADULACEAE 0 0 0 0 0 0 1 1 0 2 3 0 0 0 5 SCAPANIACEAE 0 0 0 0 0 0 1 1 1 3 1 0 0 0 4 SCHISTOCHILACEAE 0 0 0 0 0 0 1 1 0 2 0 0 0 0 2 SOLENOSTOMATACEAE 0 0 0 0 0 0 0 1 2 3 0 0 0 1 4 Subtotal (Jungermanniopsida) 0 0 0 0 0 0 12 23 20 55 10 0 2 18 85 Class LILIOPSIDA Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) ACORACEAE 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 ALISMATACEAE 0 0 0 0 0 0 0 1 5 6 2 0 3 26 37 ALSTROEMERIACEAE 0 0 0 0 0 0 5 3 4 12 2 0 1 1 16 AMARYLLIDACEAE 0 0 0 0 0 0 9 38 29 76 16 0 69 95 256 APONOGETONACEAE 0 0 0 0 0 0 2 9 3 14 3 0 3 16 36 ARACEAE 0 0 0 0 0 0 22 33 61 116 23 0 93 119 351 ARECACEAE 0 2 2 0 0 2 115 117 117 349 62 9 71 177 670 ASPARAGACEAE 1 0 1 0 0 1 27 39 40 106 8 0 27 143 285 ASPHODELACEAE 0 0 0 0 0 0 19 37 24 80 16 0 19 91 206 ASTELIACEAE 0 0 0 0 0 0 1 1 0 2 0 0 0 0 2 Subtotal* Family EX EW Subtotal CR(PE)* CR(PEW)* (EX+EW+ CR EN VU Subtotal NT LR/cd DD LC TOTAL CR(PE)+CR(PEW)) BROMELIACEAE 0 0 0 0 0 0 30 89 84 203 30 0 25 89 347 BURMANNIACEAE 0 0 0 0 0 0 1 2 1 4 0 0 1 7 12 BUTOMACEAE 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 COLCHICACEAE 0 0 0 0 0 0 2 3 3 8 1 0 2 12 23 COMMELINACEAE 0 0 0 0 0 0 1 7 3 11 2 0 4 26 43 COSTACEAE 0 0 0 0 0 0 3 3 1 7 2 0 0 12 21 CYCLANTHACEAE 0 0 0 0 0 0 2 5 10 17 3 0 1 4 25 CYMODOCEACEAE 0 0 0 0 0 0 0 0 0 0 0 0 4 13 17 CYPERACEAE 1 0 1 0 0 1 35 50 38 123 24 0 47 550 745 DIOSCOREACEAE 0 0 0 0 0 0 4 9 11 24 11 0 7 38 80 ERIOCAULACEAE 0 0 0 0 0 0 13 10 16 39 9 0 8 60 116 HAEMODORACEAE 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 HANGUANACEAE 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 HELICONIACEAE 0 0 0 0 0 0 0 0 15 15 1 0 2 1 19 HYDROCHARITACEAE 0 0 0 0 0 0 0 2 4 6 2 0 12 57 77 HYPOXIDACEAE 0 0 0 0 0 0 0 1 1 2 0 0 1 2 5 IRIDACEAE 0 0 0 0 0 0 12 18 24 54 13 0 19 59 145 JUNCACEAE 0 0 0 0 0 0 1 2 3 6 1 0 5 58 70 JUNCAGINACEAE 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 LILIACEAE 0 0 0 0 0 0 6 9 9 24 7 0 18 33 82 LOWIACEAE 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 MARANTACEAE 0 0 0 0 0 0 2 9 9 20 6 0 0 2 28 MELANTHIACEAE 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 MUSACEAE 0 0 0 0 0 0 4 0 0 4 0 0 0 8 12 NARTHECIACEAE 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 ORCHIDACEAE 5 0 5 0 0 5 192 348 185 725 74 0 212 544 1,560 PANDANACEAE 0 0
Recommended publications
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]
  • Plan Docente Curso 2021-22 P/CL009 D002 BTC Facultad De Ciencias
    PROCESO DE COORDINACIÓN DE ENSEÑANZAS DE LA FACULTAD DE CIENCIAS DE LA UEx (P/CL009_FC) Asunto: Código: Plan docente Curso 2021-22 P/CL009_D002_BTC Facultad de Ciencias PLAN DOCENTE DE LA ASIGNATURA Curso académico: 2021/2022 Identificación y características de la asignatura Código 502671 Créditos ECTS 6 Denominación Biología Vegetal (español) Denominación (inglés) Vegetal Biology Titulación Grado en Biotecnología Centro FACULTAD DE CIENCIAS Semestre 2 Carácter Obligatoria Módulo Formación Básica Materia Biología Profesor/es Nombre Despacho Correo-e Página web Trinidad Ruiz Téllez DBo2 [email protected] Área de conocimiento Botánica Departamento Biología Vegetal, Ecología y Ciencias de la Tierra Profesor coordinador (si hay más de uno) Competencias COMPETENCIAS BÁSICAS CB1 - Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una
    [Show full text]
  • Curitiba, Southern Brazil
    data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M.
    [Show full text]
  • Benthic Marine Algae on Japanese Tsunami Marine Debris – a Morphological Documentation of the Species
    Benthic Marine Algae on Japanese Tsunami Marine Debris – a morphological documentation of the species Gayle I. Hansen ([email protected]), Oregon State University, USA With DNA determinations by Takeaki Hanyuda ([email protected]) & Hiroshi Kawai ([email protected]), Kobe University, Japan Copyright: 2017, CC BY-NC (attribution, non-commercial use). For photographs, please credit G.I. Hansen or those noted on the pictures. Printing: For better pdf printing, please reduce to letter (11” x 8.5”) size, landscape orientation. Citations to be used for this series: Hansen, G.I., Hanyuda, T. & Kawai, H. (2017). Benthic marine algae on Japanese tsunami marine debris – a morphological documentation of the species. Part 1 – The tsunami event, the project overview, and the red algae. OSU Scholars Archive, Corvallis, pp. 1-50. http://dx.doi.org/10.5399/osu/1110 Hansen, G.I., Hanyuda, T. & Kawai, H. (2017). Benthic marine algae on Japanese tsunami marine debris – a morphological documentation of the species. Part 2. The brown algae. OSU Scholars Archive, Corvallis, pp. 1-61. http://dx.doi.org/10.5399/osu/1111 Hansen, G.I., Hanyuda, T. & Kawai, H. (2017). Benthic marine algae on Japanese tsunami marine debris – a morphological documentation of the species. Part 3. The green algae and cyanobacteria. OSU Scholars Archive, Corvallis. pp. 1-43. http://dx.doi.org/10.5399/osu/1112 Other publications supported: The Scholars Archive presentations above provide photographic documentation for the species included in the following publications. The poster is a pictorial overview of some of the larger debris algae made for teaching.
    [Show full text]
  • Seaweeds of California Green Algae
    PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean.
    [Show full text]
  • New Ulvaceae (Ulvophyceae, Chlorophyta) from Mesophotic Ecosystems Across the Hawaiian Archipelago1
    J. Phycol. 52, 40–53 (2016) © 2015 Phycological Society of America DOI: 10.1111/jpy.12375 NEW ULVACEAE (ULVOPHYCEAE, CHLOROPHYTA) FROM MESOPHOTIC ECOSYSTEMS ACROSS THE HAWAIIAN ARCHIPELAGO1 Heather L. Spalding,2 Kimberly Y. Conklin, Celia M. Smith Department of Botany, University of Hawai’i at Manoa, 3190 Maile Way, Honolulu, Hawaii 96822, USA Charles J. O’Kelly Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, Washington 98250, USA and Alison R. Sherwood Department of Botany, University of Hawai’i at Manoa, 3190 Maile Way, Honolulu, Hawaii 96822, USA Ulvalean algae (Chlorophyta) are most commonly Key index words: Hawai’i; ITS; mesophotic coral described from intertidal and shallow subtidal ecosystem; molecular species concept; rbcL; sea let- marine environments worldwide, but are less well tuce; tufA; Ulva; Ulvales; Umbraulva known from mesophotic environments. Their Abbreviations: BI, Bayesian inference; ITS, Internal morphological simplicity and phenotypic plasticity Transcribed Spacer; ML, maximum likelihood; rbcL, make accurate species determinations difficult, even large subunit ribulose bis-phosphate carboxylase/ at the generic level. Here, we describe the oxygenase; tufA, elongation factor tufA mesophotic Ulvales species composition from 13 locations across 2,300 km of the Hawaiian Archipelago. Twenty-eight representative Ulvales specimens from 64 to 125 m depths were collected Mesophotic coral ecosystems (MCEs) are charac- using technical diving, submersibles, and remotely terized by communities of light-dependent corals, operated vehicles. Morphological and molecular sponges, algae, and other organisms that are typi- characters suggest that mesophotic Ulvales in cally found at depths from 30 to over 150 m in trop- Hawaiian waters form unique communities ical and subtropical regions (Hinderstein et al.
    [Show full text]
  • WILDLIFE in a CHANGING WORLD an Analysis of the 2008 IUCN Red List of Threatened Species™
    WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart coberta.indd 1 07/07/2009 9:02:47 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ first_pages.indd I 13/07/2009 11:27:01 first_pages.indd II 13/07/2009 11:27:07 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart first_pages.indd III 13/07/2009 11:27:07 The designation of geographical entities in this book, and the presentation of the material, do not imply the expressions of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily refl ect those of IUCN. This publication has been made possible in part by funding from the French Ministry of Foreign and European Affairs. Published by: IUCN, Gland, Switzerland Red List logo: © 2008 Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Vié, J.-C., Hilton-Taylor, C.
    [Show full text]
  • Phytochrome Diversity in Green Plants and the Origin of Canonical Plant Phytochromes
    ARTICLE Received 25 Feb 2015 | Accepted 19 Jun 2015 | Published 28 Jul 2015 DOI: 10.1038/ncomms8852 OPEN Phytochrome diversity in green plants and the origin of canonical plant phytochromes Fay-Wei Li1, Michael Melkonian2, Carl J. Rothfels3, Juan Carlos Villarreal4, Dennis W. Stevenson5, Sean W. Graham6, Gane Ka-Shu Wong7,8,9, Kathleen M. Pryer1 & Sarah Mathews10,w Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. 1 Department of Biology, Duke University, Durham, North Carolina 27708, USA. 2 Botany Department, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany. 3 University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720, USA. 4 Royal Botanic Gardens Edinburgh, Edinburgh EH3 5LR, UK. 5 New York Botanical Garden, Bronx, New York 10458, USA.
    [Show full text]
  • Downloaded from Genbank on That Full Plastid Genomes Are Not Sufficient to Reject Al- February 28, 2012
    Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 http://www.biomedcentral.com/1471-2148/14/23 RESEARCH ARTICLE Open Access From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes Brad R Ruhfel1*, Matthew A Gitzendanner2,3,4, Pamela S Soltis3,4, Douglas E Soltis2,3,4 and J Gordon Burleigh2,4 Abstract Background: Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results: We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa.
    [Show full text]
  • Signatures of Transcription Factor Evolution and the Secondary Gain of Red Algae Complexity
    G C A T T A C G G C A T genes Article Signatures of Transcription Factor Evolution and the Secondary Gain of Red Algae Complexity Romy Petroll 1 , Mona Schreiber 1,2 , Hermann Finke 1, J. Mark Cock 3 , Sven B. Gould 1,4 and Stefan A. Rensing 1,5,* 1 Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; [email protected] (R.P.); [email protected] (M.S.); hermann.fi[email protected] (H.F.); [email protected] (S.B.G.) 2 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany 3 Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, CNRS, UPMC University Paris 06, CS 90074, 29688 Roscoff, France; [email protected] 4 Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany 5 Centre for Biological Signaling Studies (BIOSS), University of Freiburg, 79108 Freiburg, Germany * Correspondence: [email protected] Abstract: Red algae (Rhodophyta) belong to the superphylum Archaeplastida, and are a species-rich group exhibiting diverse morphologies. Theory has it that the unicellular red algal ancestor went through a phase of genome contraction caused by adaptation to extreme environments. More re- cently, the classes Porphyridiophyceae, Bangiophyceae, and Florideophyceae experienced genome expansions, coinciding with an increase in morphological complexity. Transcription-associated proteins (TAPs) regulate transcription, show lineage-specific patterns, and are related to organis- mal complexity. To better understand red algal TAP complexity and evolution, we investigated Citation: Petroll, R.; Schreiber, M.; the TAP family complement of uni- and multi-cellular red algae.
    [Show full text]
  • Division: Chlorophyta (Green Algae) II. Algal Taxonomy
    Division: Chlorophyta (green algae) I. General Characteristics II. Distinguishing Classes III. Morphology IV. Classes in Detail ~ 16,000 species ~ 90% freshwater 1 II. Algal taxonomy Hierarchical system of classification: Level: suffix: example: Domain Eukaryote Group Plantae Division -phyta Chlorophyta Class -phyceae Ulvophyceae Order -ales Ulvales Family -aceae Ulvaceae Genus Ulva species fenestrata 2 1 DOMAIN Groups (Kingdom) 1.Bacteria- cyanobacteria (blue green algae) 2.Archae “Algae” 3.Eukaryotes 1. Alveolates- dinoflagellates 2. Stramenopiles- diatoms, heterokonyophyta 3. Rhizaria- unicellular amoeboids 4. Excavates- unicellular flagellates 5. Plantae- rhodophyta, chlorophyta, seagrasses 6. Amoebozoans- slimemolds 7. Fungi- heterotrophs with extracellular digestion 8. Choanoflagellates- unicellular 3 9. Animals- multicellular heterotrophs Glaucophytes Plantae Rhodophyta Chlorophytes Chl b, Charophytes starch Land Plants 4 Adapted from Sadava 2014 2 Phylogenetics of Chlorophyta (morphological, molecular data) 5 classes: Chlorophyceae Chlorophyta Trebouxiophyceae Chl b, starch Ulvophyceae Prasinophyceae Encasement of egg Charophytes Charophyceae Embryo, cuticle Land plants 5 I. General Green Characteristics: 1) Pigments: ? 2) Chloroplast structure?: 3) Storage product? 4) Flagella? 6 3 Classes: Chlorophyceae = freshwater Trebouxiophyceae = freshwater, soil and marine Ulvophyceae = marine macroalgae Prasinophyceae = primarily marine flagellates, some freshwater; modern representatives of earliest green algae Charophyceae = freshwater;
    [Show full text]