Stable Rationality of Quadric and Cubic Surface Bundle Fourfolds
STABLE RATIONALITY OF QUADRIC AND CUBIC SURFACE BUNDLE FOURFOLDS ASHER AUEL, CHRISTIAN BOHNING,¨ AND ALENA PIRUTKA Abstract. We study the stable rationality problem for quadric and cubic surface bundles over surfaces from the point of view of the degeneration method for the Chow group of 0-cycles. Our main result is that a very general hypersurface X of bidegree (2, 3) in P2 × P3 is not stably rational. Via projections onto the two factors, X → P2 is a cubic surface bundle and X → P3 is a conic bundle, and we analyze the stable rationality problem from both these points of view. Also, 2 we introduce, for any n ≥ 4, new quadric surface bundle fourfolds Xn → P with 2 discriminant curve Dn ⊂ P of degree 2n, such that Xn has nontrivial unramified Brauer group and admits a universally CH0-trivial resolution. 1. Introduction An integral variety X over a field k is stably rational if X Pm is rational, for some m. In recent years, failure of stable rationality has been× established for many classes of smooth rationally connected projective complex varieties, see, for instance [1, 3, 4, 7, 15, 16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 36, 37]. These results were obtained by the specialization method, introduced by C. Voisin [37] and developed in [16]. In many applications, one uses this method in the following form. For simplicity, assume that k is an uncountable algebraically closed field and consider a quasi-projective integral scheme B over k and a generically smooth projective morphism B with positive dimensional fibers.
[Show full text]