Environmental Applications of Engineered Nanomaterials: Synthesis and Characterization
Total Page:16
File Type:pdf, Size:1020Kb
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en PhD thesis Environmental Applications of Engineered Nanomaterials: Synthesis and Characterization Ahmad Mohamed Ahmad Abo Markeb September 2017 Title: Environmental Applications of Engineered Nanomaterials: Synthesis and Characterization Realized by: Ahmad Mohamed Ahmad Abo Markeb Supervised by: Dr. Xavier Font & Dr. Amanda Alonso PhD program in Environmental Science and Technology Departament d'Enginyeria Química Biològica i Ambiental. Escola d'Enginyeria Universitat Autònoma de Barcelona (UAB) Part of the work presented here was developed in the framework of the following project: Desarrollo de una nueva generación de nanoestructuras para la eliminación de gases de efecto invernadero (NANO-GEI). Founded by: Fundación Areces. Xavier Font Segura i Amanda Alonso González, professors del Departament d'Enginyeria Química Biològica i Ambiental de la Universitat Autònoma de Barcelona, CERTIFIQUEM: Que el Llicenciat en Químiques, Ahmad Mohamed Ahmad Abo Markeb, ha realitzat sota la nostra direcció́ el treball que, amb títol Environmental Applications of Engineered Nanomaterials: Synthesis and Characterization, es presenta en aquesta memòria, la qual constitueix la seva Tesi per optar al Grau de Doctor per la Universitat Autònoma de Barcelona. I perquè̀ en prengueu coneixement i consti als efectes oportuns, presentem a l'Escola d'Enginyeria de la Universitat Autònoma de Barcelona l'esmentada Tesi, signant el present certificat. Bellaterra, 15 de juny de 2017 Prof. Xavier Font Segura Dr. Amanda Alonso To my parents, brother, and sister To my lovely wife and son To Faculty of Science, Assiut University, Egypt Acknowledgments Acknowledgments First and foremost, I thank ALLAH the most Beneficent and Merciful for this thesis. Then I would like to divide my grateful thanks into two parts; I- In Spain Thank you very much Prof. Toni Sánchez, leader of GICOM group, for helping me to obtain the scholarship from Egypt to get my PhD thesis from Universitat Autònoma de Barcelona (UAB), and to his continuously encouragement and supports. Very special gratitude to Prof. Xavier Font, and Dr. Amanda Alonso for being such as wonderful and helpful supervisors to me. Thank you very much for your guidance and I am highly indebted to both of you for your encouragement, the patience for my imperfections and open up the opportunity for me to work in such an interesting research. I would like to express my appreciations to all members of GICOM group and especially Prof. Teresa Gea, Prof. Adriana, Dr. Raquel, Dr. Javier Moral for their supports and encouragements. I am very grateful being a member of this extremely supportive research group. Very special thanks to all my colleagues in GICOM group and especially to Pedro, Oscar, Alejandra, Cindy, and Maria for their helps and supports. Also, a special mention to Lucia Delgado, I would like to express my thanks for her help in Toxicity measurements and other technical staff in the lab. Thanks to the director and to all members of the secretary of Departament d'Enginyeria Química Biològica i Ambiental. I would like to acknowledge Manuel, Pili, and Rosi for their technical assistance. Acknowledgment Besides, I would like to express all my appreciations to people who work in Servei d'Anàlisi Química, Servei de Microscopia, Institut Català de Nanociència i Nanotecnologia (ICN2), and Institut Català de Materials Avançats de Barcelona (ICMAB) for their helps to characterize the nanomaterials. Special thanks to Montserrat, coordinator of Institut de Ciencia i Tecnología Ambiental (ICTA), and to Cristina Duran for their helps. My Sincere thanks are extended to the examination committee for reviewing the thesis. II- In Egypt First, I would like to thank the cultural affairs sector and missions (Ministry of higher education and scientific research) for the grant to study my PhD at Universitat Autònoma de Barcelona (UAB), Spain. I would like to express my great thanks and deep appreciation to my previous supervisor Prof. Nagwa Abo EL-Maali, Vice-Dean of the Faculty of Science for Post Graduate and Research, Assiut University and Professor of Analytical Chemistry, Faculty of Science, Assiut University for her continuous encouragement and helpful advices. I am indebted to Prof. Hassan El Hawary, Dean of the Faculty of Science, and Prof. Kamal Ibrahim, Head of Chemistry Department, Faculty of Science, Assiut University, for their help and moral supports. I am also grateful to all members of the Chemistry Department, Faculty of Science, Assiut University, who presented their aids in different directions. Acknowledgments Last but not least, sincere thanks and appreciation are presented to my parents, brother, sister, lovely wife, son and all my good friends who provide me their helps, patience, assistance and encouragement during this work. Ahmad Abo Markeb 2017 Table of Contents Index i Summary xi Resum xiii Resumen xv Abbreviations xvii Chapter 1 General introduction 1 1.1 World challenges for environmental pollution 3 1.2 Water pollution and remediation 4 1.2.1 Contaminants of emerging concerns 5 1.2.2 Remediation techniques 11 1.2.3 Adsorption method 12 1.3 Air pollution and treatments 16 1.3.1 Air pollution 16 1.3.2 Air pollution treatment 18 1.4 Nanotechnology 20 1.4.1 Introduction 20 1.4.2 Classification of nanomaterials 21 1.4.3 Synthetic methods of nanomaterials 25 1.4.4 Environmental applications of nanomaterials 28 1.4.5 Nanomaterials as adsorbents for water and gases remediation 29 1.4.6 Toxicity of nanomaterials 33 1.5 References 35 Chapter 2 Research objectives and thesis outline 53 2.1 Research objectives 55 2.2 Thesis outline 56 Chapter 3 General methods and materials 59 3.1 Characterization of the nanomaterials 61 3.1.1 Inductive Coupled Plasma - optical emission spectroscopy 61 3.1.2 Inductive coupled plasma –mass spectrometry 62 3.1.3 X-Ray Diffraction 63 3.1.4 Scanning Electron Microscopy 64 3.1.5 Transmission Electron Microscopy 65 3.1.6 Energy-Dispersive X-Ray Spectroscopy 66 3.1.7 Scanning Transmission Electron Microscopy coupled with 67 Electron Energy Loss Spectra 3.1.8 Surface area measurements by Brunauer-Emmett-Teller 68 method 3.1.9 Luminescence spectrometer 68 3.1.10 Zeta potential measurements 69 i 3.1.11 Toxicity tests 70 3.2 Analytical methods 70 3.2.1 Ionic Chromatography 70 3.2.2 Biosystems Analyzer 71 3.2.3 Ultraviolet visible spectrophotometer 72 3.2.4 Gas Chromatography 73 3.2.5 Turbidimeter 74 3.3 Experimental set-up 75 3.3.1 Batch experiments 75 3.3.2 Fixed-bed column studies 76 3.4 Isotherm models 78 3.5 Central composite design, CCD, and Response Surface 81 methodology, RSM 3.6 Statistical analysis 82 3.7 References 82 Part A Water remediation 87 Chapter 4 Engineered nanomaterials: synthesis, characterization, 89 and its potential efficiencies on water remediation 4.1 Introduction 91 4.2 Materials and methods 92 4.2.1 Materials 92 4.2.2 Synthesis of the nanomaterials 93 4.2.2.1 Metal oxides NPs synthesis 93 4.2.2.1.1 Magnetite NPs 93 4.2.2.1.2 Cerium oxide NPs 94 4.2.2.1.3 Titanium oxide NPs 94 4.2.2.2 Preparation of functionalized magnetite NPs 95 4.2.2.2.1 Fe3O4 NPs functionalized with NH2 groups 95 4.2.2.2.1.1 Polyethyleneimine-modified Fe3O4 NPs 95 4.2.2.2.1.2 Cetyltrimethylammonium bromide coated Fe3O4 NPs 95 4.2.2.3 Preparation of graphene based nanomaterials 96 4.2.2.3.1 Synthesis of graphene oxide 96 4.2.2.3.2 Synthesis of reduced graphene oxide 96 4.2.2.4 Synthesis of metal oxide/reduced graphene oxide 96 nanocomposites 4.2.3 Synthesis of chitosan and description of the supplied supports 97 4.2.3.1 Synthesis of Chitosan beads (wet and dried) 97 4.2.3.2 Supplied supports 98 4.2.4 Characterization of the nanomaterials 98 ii 4.2.5 Adsorption studies 98 4.2.6 Analytical methods 99 4.2.6.1 Anions analysis (fluoride, nitrate, and phosphate) 99 4.2.6.2 Heavy metals determination 100 4.2.6.3 Persistent organic pollutants determination 100 4.2.7 Toxicity measurements 101 4.3 Results and discussion 101 4.3.1 Characterization of the synthesized nanomaterials 101 4.3.1.1 Metal oxides NPs 101 4.3.1.2 Metal oxides/ reduced graphene oxide NCs 104 4.3.1.3 XRD pattern of the metal oxide nanoparticles 105 4.3.2 Applications of the nanoparticles 107 4.3.2.1 Anions removal 107 4.3.2.2 Heavy metals removal 112 4.3.2.3 Persistent organic pollutants removal 114 4.3.3 Toxicity of the nanoparticles 117 4.4 Conclusions 118 4.5 References 119 Chapter 5 Novel magnetic core-shell Ce-Ti@Fe3O4 nanoparticles as 127 adsorbent for water contaminants removal 5.1 Introduction 129 5.2 Materials and methods 130 5.2.1 Materials 130 5.2.2 Synthesis of the core shell nanoparticles 130 5.2.2.1 Preparation of magnetite nanoparticles 130 5.2.2.2 Preparation of Ce-Ti@Fe3O4nanoparticles 131 5.2.3 Characterization of the Ce-Ti@Fe3O4 NPs 131 5.2.4 Analytical methods used in the Adsorption Experiments 132 5.2.4.1 Ionic chromatography for fluoride, nitrate and phosphate 132 analysis 5.2.4.2 UV-Vis