Nanophase Ceramics for Improved Drug Delivery: Current Opportunities and Challenges by Lei Yang, Brian W

Total Page:16

File Type:pdf, Size:1020Kb

Nanophase Ceramics for Improved Drug Delivery: Current Opportunities and Challenges by Lei Yang, Brian W bulletin cover story Nanophase Ceramics for Improved Drug Delivery: Current Opportunities and Challenges by Lei Yang, Brian W. Sheldon and Thomas J. Webster Introduction After more than a decade of research and development, nanotechnology has reshaped the traditional thinking (or lack thereof) of using ceramics for drug delivery. Although drug delivery has been a poly- mer-dominated field, the blossoming of nanotechnology means that ceramic materials are now showing much promise for numerous drug delivery applications. Typically, nanotechnology is defined as the use of materials and systems whose structures and com- ponents exhibit novel and significantly changed properties when control is gained at the nanoscale (spe- cifically, <100 nm or <10–7 m).1 For ceramics, this means fabricating ceramics whose grain or particle sizes are within the range of 1 nm to 100 nm). Nanophase ceramics already have been widely used in a broad spectrum of biomedical applications, and now drug delivery is one of the fastest emerging and developing arenas for nano- ceramics, drawing increasing attention over the past few years. Indeed, research- ers are realizing that the extraordinary characteristics of nanophase ceramics (including size, structural advantages, highly active surfaces, unique physical and chemical properties and ease of modification) suggest that they can be excellent platforms for drug transportation and controlled prolonged release compared with polymeric platforms. The advances nanophase ceramics are making in drug delivery seem to promise that these materials will solve many of today’s challenging medical problems. lassifications based on their architectural differences, C the nanophase ceramics reviewed below can be placed into two general categories: nanoparticles and nanoscaffolds. Alhough increasingly popular, both of these categories of multifunctional drug delivery system are still in their infancy. On the other hand, analyses of the potential risks of using nanophase ceramics as drug carriers are often omitted. Therefore, the last part of the article discusses the challenges that nanophase ceramics face when compared to polymeric drug delivery systems. Also, ilt also should be note that although this article con- centrates only on ceramic materials, the potential and development of hybrid or composite ceramic–polymer drug delivery systems that incorporate the benefits from other types of materials should not be neglected. Ceramic nanoparticles Particulate drug carriers (as opposed to two-dimensional coatings or three-dimensional scaffolds) have a variety of advantages for use in drug delivery and are probably the most common ceramic drug delivery platforms today. 24 American Ceramic Society Bulletin, Vol. 89, No. 2 Particulate carriers can easily trans- a dual ability: it can tar- port drug entities in volume-confined get tumor cells and release administration routes (such as blood embedded doxorubicin – a vessels, the digestive tract, across cell DNA-interacting antican- membranes, etc.) and, thus, can deliver cer drug – in responses to drugs in minimally invasive methods temperature changes above just as their polymeric counterparts. 34.4°C.3 Particulate carriers also possess large However, all of the above surface area-to-volume (or surface benefits are generally true (a) area-to-mass) ratios that allow for a for polymers too, and are high drug payload and a prolonged associated primarily with drug-release profile. Another plus is their nano size. So, how are that from a process and production nanoparticles of ceramics dif- point of view, particulate materials are ferent from polymers in terms also easy to fabricate and inexpensive of drug delivery? Ceramic to produce, especially in terms of mass nanoparticles possess several production. unique properties compared Advances in nanotechnology have with polymeric or metallic further strengthened these advantages nanoparticles. by providing ultrasmall particles of First, ceramic nanopar- high purity and extremely high surface ticles usually have longer bio- area-to-volume ratios as well as afford- degradation times, a property able fabrication processes with a high crucial to diffusion-controlled (b) control of particle size, morphology or drug release kinetics. Slowly porosity. Nanoscale drug-carrying par- degradable – or even close ticles can enhance endocytosis of drugs to nondegradable – ceramic by target cells and can also facilitate matrices can retain drugs for deeper penetration into capillaries and longer times after adminis- through fenestrations to, ultimately, tration. In these cases, drug enhanced cellular uptake. release is dependent on con- For example, studies have shown centration gradients and can that nanoparticles with sizes from 10 be prolonged. nm to 70 nm in diameter can penetrate Second, unlike polymers, capillaries, and those with sizes 70 nm ceramic nanoparticles in to 200 nm have the most prolonged aqueous conditions gener- circulation time compared with other ally do not swell or change sizes.2 High surface area-to-volume porosity and are more stable ratios of nanoparticles and their associ- when variations in pH or (c) ated high surface activities can further temperature are encountered. improve drug-loading efficiencies and For instance, the small swell- Fig. 1. Hollow calcium phosphate nanospheres stability. These means that medical ing ratios of ceramics prevent (a) before and (b) after ultrasonic applications. professionals can achieve better drug the release of a burst of drugs (c) Release profiles of amylose from the hollow control and sustained release. – a problem commonly seen calcium phosphate nanospheres under vari- Moreover, nanotechnology offers in hydrogels, such as poly(2- ous applied ultrasonic power densities: (1) no ultrasonic application; (2) continuous ultrasonic various novel approaches to control hydroxyethyl methacrylate) treatment (150 W); (3) 1-min treatment of ultra- drug transportation throughout the (pHEMA) drug-delivery sound (150 W) between an interval of 1.5 min; body, whereby pharmaceuticals can be systems. (4) continuous ultrasonic treatment (100 W); released in precise, timely, targetable Third, and possibly and (5) continuous ultrasonic treatment (50 W). or environment-responsive manners. the most intriguing of all, (Modified from Ref. 10) For example, a thermosensitive nano- properly fabricated ceramic gel with the ability to target tumors nanoparticles can possess the biocompatibility even before releasing was developed recently.3 The poly(N- same chemistry, crystalline structure drugs. In addition, the nanoparticles isopropylacrylamide-co-propyl acrylic and size as the constituents of targeted can be engineered with favorable elec- acid) nanogel, conjugated with an tissues (e.g., various types of calcium trical (e.g., ferroelectrical and diaelec- arginine-glycine-aspartic acid (RGD) phosphate in bone). Their fabrication tric properties), mechanical (e.g., pizeo- containing peptide and transferin, has enhances the material’s bioactivitiy and electrical properties, ultrahigh hardness, American Ceramic Society Bulletin, Vol. 89, No. 2 25 Nanophase ceramics for improved drug delivery More interestingly, researchers Table 1. Representative ceramic nanoparticle for drug-delivery applications have designed and fabricated calcium Ceramics Structural feature Applications phosphate nanoparticles that achieve Calcium phosphate Hollow apatite nanospheres On–off drug release con trolled by sonication10, 11 the on–off delivery of drugs triggered Apatite nanocrystals Enhancing protein adsorption and prolong desorption37 by programmable external forces, such Nanocomposites Enhancing gene transfer and controlling the extent of gene as ultrasonic vibration with a spe- transfer42 cific power density. As an example, Iron oxides Nanoparticles Magnetic liposomes for BMP delivery;39 Drug release one group has developed a type of controlled by magnetic heating;4; Multi-functional hydroxyapatite-like hollow nanospheres drug carriers with capacities of imaging and targeting (sizes 145 ± 20 nm) that can collapse Ferrofluids Colloidal solutions of iron oxide surrounded by coatings and transform to pin-shaped HA-like of targeting molecules for delivery of drugs41 nanocrystallites under ultrasonic treat- Silica Nanoparticles Photosensitizer for photodynamic therapy (PDT)24, 25 ment.10 Knowing this, the group suc- Hollow nanospheres Enhance drug loading capacity13 cessfully encapsulated drugs in the hol- Hollow nanotubes Improve drug loading capacity and biocompatibility of low structures that were then triggered drug delivery system;14 Gene delivery43 by ultrasound. A drug release study of Titania Nanotubes Enhance drug loading capacity and prolong drug release30 these HA nanospheres using amylose Alumina Hollow nanoshells Drug loading agents15 as a drug model revealed that the drug Calcium carbonate Hollow spheres Drug release vectors and diagnostic markers16 release rates can be controlled by alter- 2+ 3+ – Layered double Anionic nanoclays (M 1-xM x(OH)2) Highly efficient, bio-resorbable drug and gene delivery ing ultrasound power density to collapse m– 26, 27 hydroxides (LDH) (A )x/m·nH2O; M: Metal cations platforms various amounts of nanospheres (Fig. and A: Interlayer anions 1).10, 11 Various versions of hollow nano- etc.), magnetic (e.g., superparamagnetic Several recent examples of nano- structures composed of other ceramic properties) and optical (e.g., photother- phase ceramics used as novel drug materials also have
Recommended publications
  • An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: a Review
    Muthadi Radhika Reddy /J. Pharm. Sci. & Res. Vol. 12(7), 2020, 925-940 An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: A Review Muthadi Radhika Reddy1* 1School of pharmacy, Gurunanak Institute of Technical Campus, Hyderabad, Telangana, India and Department of Pharmacy, Gandhi Institute of Technology and Management University, Vizag, Andhra Pradesh, India INTRODUCTION 2. Useful in situations where rapid onset of action Fast dissolving drug delivery systems were first developed required such as in motion sickness, allergic attack, in the late 1970s as an alternative to conventional dosage coughing or asthma forms. These systems consist of solid dosage forms that 3. Has wide range of applications in pharmaceuticals, Rx disintegrate and dissolve quickly in the oral cavity without Prescriptions and OTC medications for treating pain, the need of water [1]. Fast dissolving drug delivery cough/cold, gastro-esophageal reflux disease,erectile systems include orally disintegrating tablets (ODTs) and dysfunction, sleep disorders, dietary supplements, etc oral thin films (OTFs). The Centre for Drug Evaluation [4] and Research (CDER) defines ODTs as,“a solid dosage 4. No water is required for the administration and hence form containing medicinal substances which disintegrates suitable during travelling rapidly, usually within a matter of seconds, when placed 5. Some drugs are absorbed from the mouth, pharynx upon the tongue” [2]. USFDA defines OTFs as, “a thin, and esophagus as the saliva passes down into the flexible, non-friable polymeric film strip containing one or stomach, enhancing bioavailability of drugs more dispersed active pharmaceutical ingredients which is 6. May offer improved bioavailability for poorly water intended to be placed on the tongue for rapid soluble drugs by offering large surface area as it disintegration or dissolution in the saliva prior to disintegrates and dissolves rapidly swallowing for delivery into the gastrointestinal tract” [3].
    [Show full text]
  • An Overview On: Sublingual Route for Systemic Drug Delivery
    International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 __________________________________________Review Article An Overview on: Sublingual Route for Systemic Drug Delivery K. Patel Nibha1 and SS. Pancholi2* 1Department of Pharmaceutics, BITS Institute of Pharmacy, Gujarat Technological university, Varnama, Vadodara, Gujarat, India 2BITS Institute of Pharmacy, Gujarat Technological University, Varnama, Vadodara, Gujarat, India. __________________________________________________________________________________ ABSTRACT Oral mucosal drug delivery is an alternative and promising method of systemic drug delivery which offers several advantages. Sublingual literally meaning is ''under the tongue'', administrating substance via mouth in such a way that the substance is rapidly absorbed via blood vessels under tongue. Sublingual route offers advantages such as bypasses hepatic first pass metabolic process which gives better bioavailability, rapid onset of action, patient compliance , self-medicated. Dysphagia (difficulty in swallowing) is common among in all ages of people and more in pediatric, geriatric, psychiatric patients. In terms of permeability, sublingual area of oral cavity is more permeable than buccal area which is in turn is more permeable than palatal area. Different techniques are used to formulate the sublingual dosage forms. Sublingual drug administration is applied in field of cardiovascular drugs, steroids, enzymes and some barbiturates. This review highlights advantages, disadvantages, different sublingual formulation such as tablets and films, evaluation. Key Words: Sublingual delivery, techniques, improved bioavailability, evaluation. INTRODUCTION and direct access to systemic circulation, the oral Drugs have been applied to the mucosa for topical mucosal route is suitable for drugs, which are application for many years. However, recently susceptible to acid hydrolysis in the stomach or there has been interest in exploiting the oral cavity which are extensively metabolized in the liver.
    [Show full text]
  • Liposome-Based Drug Delivery Systems in Cancer Immunotherapy
    pharmaceutics Review Liposome-Based Drug Delivery Systems in Cancer Immunotherapy Zili Gu 1 , Candido G. Da Silva 1 , Koen van der Maaden 2,3, Ferry Ossendorp 2 and Luis J. Cruz 1,* 1 Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 2 Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 3 TECOdevelopment GmbH, 53359 Rheinbach, Germany Received: 1 October 2020; Accepted: 2 November 2020; Published: 4 November 2020 Abstract: Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed. Keywords: liposome; drug delivery; cancer immunotherapy; immunomodulation 1. The Potential of Immunotherapy for the Treatment of Cancer Cancer immunotherapy has been widely explored because of its durable and robust effects [1].
    [Show full text]
  • Intra-Luminal Focused Ultrasound for Augmentation of Gastrointestinal Drug Delivery
    Editorial Page 1 of 2 Intra-luminal focused ultrasound for augmentation of gastrointestinal drug delivery Ezekiel Maloney1, Joo Ha Hwang2 1Department of Radiology, 2Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA Correspondence to: Joo Ha Hwang, MD, PhD. Division of Gastroenterology, Department of Medicine, University of Washington, Box 359773, 325 Ninth Avenue, Seattle, WA 98104, USA. Email: [email protected]. Provenance: This is a Guest Editorial commissioned by Section Editor Hui Kong, MD, PhD (Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China). Comment on: Schoellhammer CM, Schroeder A, Maa R, et al. Ultrasound-mediated gastrointestinal drug delivery. Sci Transl Med 2015;7:310ra168. Submitted Feb 01, 2017. Accepted for publication Feb 06, 2017. doi: 10.21037/atm.2017.03.42 View this article at: http://dx.doi.org/10.21037/atm.2017.03.42 The recent article by Schoellhammer et al., “Ultrasound- intensity ultrasound frequencies followed by quantification mediated gastrointestinal drug delivery” primarily of delivery of permeants (e.g., glucose, dextran, insulin). addresses practical limitations in drug delivery for medical Treated tissues showed enhanced transport. Similar management of inflammatory bowel disease (IBD), and findings were demonstrated in small and large bowel tissue presents pre-clinical data demonstrating that intra- for radiolabeled mesalamine and hydrocortisone. With 1 luminal, sub-ablative focused ultrasound (FUS), delivered minute of ultrasound treatment time, 3–5-fold improved via a trans-rectal transducer, can overcome some of these drug delivery was observed versus control. Additional limitations (1). The clinical application and benefit of such a ex vivo experiments utilizing variable FUS protocols to device is clear.
    [Show full text]
  • Chapter 1 Controlling Drug Delivery
    chapter 1 Controlling drug delivery Overview In this chapter we will: & differentiate drug delivery systems according to their physical state & differentiate drug delivery systems according to their route of administration & differentiate drug delivery systems according to their type of drug release & discuss drug transport across epithelial barriers. Introduction KeyPoints & Continued developments in Pharmacotherapy can be defined as the treatment chemistry, molecular biology and prevention of illness and disease by means of and genomics support the drugs of chemical or biological origin. It ranks discovery and developments among the most important methods of medical of new drugs and new drug treatment, together with surgery, physical targets. & treatment, radiation and psychotherapy. There The drug delivery system are many success stories concerning the use of employed can control the pharmacological action of a drugs and vaccines in the treatment, prevention drug, influencing its and in some cases even eradication of diseases pharmacokinetic and (e.g. smallpox, which is currently the only subsequent therapeutic human infectious disease completely profile. eradicated). Although it is almost impossible to estimate the exact extent of the impact of pharmacotherapy on human health, there can be no doubt that pharmacotherapy, together with improved sanitation, better diet and better housing, has improved people’s health, life expectancy and quality of life. Tip Unprecedented developments in genomics Combinatorial chemistry is a way to and molecular biology today offer a plethora of build a variety of structurally related new drug targets. The use of modern chemical drug compounds rapidly and synthetic methods (such as combinatorial systematically. These are assembled chemistry) enables the syntheses of a large from a range of molecular entities number of new drug candidates in shorter times which are put together in different ‘ ’ than ever before.
    [Show full text]
  • Simultaneous PAN Carbonization and Ceramic Sintering for Fabricating Carbon Fiber-Ceramic Composite Heaters
    applied sciences Article Simultaneous PAN Carbonization and Ceramic Sintering for Fabricating Carbon Fiber-Ceramic Composite Heaters Daiqi Li 1,2, Bin Tang 1,2 , Xi Lu 1, Quanxiang Li 1, Wu Chen 2, Xiongwei Dong 2, Jinfeng Wang 1,2,* and Xungai Wang 1,2,* 1 Deakin University, Institute for Frontier Materials, Geelong/Melbourne, Victoria 3216, Australia; [email protected] (D.L.); [email protected] (B.T.); [email protected] (X.L.); [email protected] (Q.L.) 2 Wuhan Textile University, Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan 430073, China; [email protected] (W.C.); [email protected] (X.D.) * Correspondence: [email protected] (X.W.); [email protected] (J.W.); Tel.: +61-3-5227-2012 (J.W.) Received: 15 October 2019; Accepted: 14 November 2019; Published: 17 November 2019 Abstract: In this study, a single firing was used to convert stabilized polyacrylonitrile (PAN) fibers and ceramic forming materials (kaolin, feldspar, and quartz) into carbon fiber/ceramic composites. For the first time, PAN carbonization and ceramic sintering were achieved simultaneously in one thermal cycle and the microscopic morphologies and physical features of the obtained carbon fiber/ceramic composites were characterized in detail. The obtained carbon fiber/ceramic composite showed comparable flexural strength as commercial ceramic tiles. Meanwhile, the composite showed exceptional electro-thermal performance based on the electro-thermal performance of the carbonized PAN fibers, which could reach 108 °C after 15 s, 204 °C after 90 s, and 292 °C after 450 s at 5 V (2.6 A), thereby making the ceramic composite a good candidate as an indoor climate control heater, defogger device, kettle, and other heating element.
    [Show full text]
  • Ceramic Carbides: the Tough Guys of the Materials World
    Ceramic Carbides: The Tough Guys of the Materials World by Paul Everitt and Ian Doggett, Technical Specialists, Goodfellow Ceramic and Glass Division c/o Goodfellow Corporation, Coraopolis, Pa. Silicon carbide (SiC) and boron carbide (B4C) are among the world’s hardest known materials and are used in a variety of demanding industrial applications, from blasting-equipment nozzles to space-based mirrors. But there is more to these “tough guys” of the materials world than hardness alone—these two ceramic carbides have a profile of properties that are valued in a wide range of applications and are worthy of consideration for new research and product design projects. Silicon Carbide Use of this high-density, high-strength material has evolved from mainly high-temperature applications to a host of engineering applications. Silicon carbide is characterized by: • High thermal conductivity • Low thermal expansion coefficient • Outstanding thermal shock resistance • Extreme hardness FIGURE 1: • Semiconductor properties Typical properties of silicon carbide • A refractive index greater than diamond (hot-pressed sheet) Chemical Resistance Although many people are familiar with the Acids, concentrated Good Acids, dilute Good general attributes of this advanced ceramic Alkalis Good-Poor (see Figure 1), an important and frequently Halogens Good-Poor overlooked consideration is that the properties Metals Fair of silicon carbide can be altered by varying the Electrical Properties final compaction method. These alterations can Dielectric constant 40 provide knowledgeable engineers with small Volume resistivity at 25°C (Ohm-cm) 103-105 adjustments in performance that can potentially make a significant difference in the functionality Mechanical Properties of a finished component.
    [Show full text]
  • Introduction to Metal-Ceramic Technology Third Edition
    Introduction to Metal-Ceramic Technology Third Edition Naylor_FM.indd 1 10/20/17 8:57 AM IntroductionMetal-Ceramic to Technology Third Edition W. Patrick Naylor, DDS, MPH, MS Adjunct Professor of Restorative Dentistry Loma Linda University School of Dentistry Loma Linda, California With contributions by Charles J. Goodacre, DDS, MSD Distinguished Professor of Restorative Dentistry Loma Linda University School of Dentistry Loma Linda, California Satoshi Sakamoto, MDT Master Dental Technician Loma Linda University School of Dentistry Loma Linda, California Berlin, Barcelona, Chicago, Istanbul, London, Milan, Moscow, New Delhi, Paris, Prague, Sao Paulo, Seoul, Singapore, Tokyo, Warsaw Naylor_FM.indd 3 10/20/17 8:58 AM Dedications To my dear wife, Penelope, for her skillful reviewing and patience over the many months devoted to the production of this third edition. And to the memory of my mentor, teacher, and friend, Dr Ralph W. Phillips. As an expert of international renown, his contributions to dental materials science and dentistry in general are immeasurable. This is a small tribute to a man who left an indelible mark on the dental profession. Library of Congress Cataloging-in-Publication Data Names: Naylor, W. Patrick, author. Title: Introduction to metal-ceramic technology / W. Patrick Naylor. Description: Third edition. | Hanover Park, IL : Quintessence Publishing Co, Inc, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017031693 (print) | LCCN 2017034109 (ebook) | ISBN 9780867157536 (ebook) | ISBN 9780867157529 (hardcover) Subjects: | MESH: Metal Ceramic Alloys | Dental Porcelain | Technology, Dental--methods Classification: LCC RK653.5 (ebook) | LCC RK653.5 (print) | NLM WU 180 |DDC 617.6/95--dc23 LC record available at https://lccn.loc.gov/2017031693 97% © 2018 Quintessence Publishing Co, Inc Quintessence Publishing Co, Inc 4350 Chandler Drive Hanover Park, IL 60133 www.quintpub.com 5 4 3 2 1 All rights reserved.
    [Show full text]
  • Ceramic Engineering Building
    CERAMIC ENGINEERING BUILDING UNIVERSITY OF ILLINOIS URBANA CHAMPAIGN, ILLINOIS Description of the Building and Program of Dedication, December 6 unci 7, 1916 THE TRUSTEES THE PRESIDENT AND THE FACULTY OF THIS UNIVERSITY OF ILLINOIS CORDIALLY INVITE YOU TO ATTEND THE DEDICATION OF THE CERAMIC ENGINEERING BUDUDING ON WEDNESDAY AND THURSDAY DECEMBER SIXTH AND SEVENTH NINETEEN HUNDRED SIXTEEN URBANA. ILLINOIS CERAMIC ENGINEERING BUILDING UNIVERSITY OF ILLINOIS URBANA - - CHAMPAIGN ILLINOIS DESCRIPTION OF BUILDING AND PROGRAM OF DEDICATION DECEMBER 6 AND 7, 1916 PROGRAM FOR THE DEDICATION OP THE CERAMIC ENGINEERING BUILDING OF THE UNIVERSITY OF ILLINOIS December 6 and 7> 1916 WEDNESDAY, DECEMBER 6 1.30 p. M. In the office of the Department of Ceramic Engineering, Room 203 Ceramic Engineering Building Meeting of the Advisory Board of the Department of Ceramic Engineering: F. W. BUTTERWORTH, Chairman, Danville A. W. GATES Monmouth W. D. GATES Chicago J. W. STIPES Champaign EBEN RODGERS Alton 2.30-4.30 p, M. At the Ceramic Engineering Building Opportunity will be given to all friends of the University to inspect the new building and its laboratories. INTRODUCTORY SESSION 8 P.M. At the University Auditorium DR. EDMUND J. JAMBS, President of the University, presiding. Brief Organ Recital: Guilnant, Grand Chorus in D Lemare, Andantino in D-Flat Faulkes, Nocturne in A-Flat Erb, Triumphal March in D-Flat J. LAWRENCE ERB, Director of the Uni­ versity School of Music and University Organist. PROGRAM —CONTINUED Address: The Ceramic Resources of America. DR. S. W. STRATTON, Director of the Na­ tional Bureau of Standards, Washington, D. C. I Address: Science as an Agency in the Develop­ ment of the Portland Cement Industries, MR.
    [Show full text]
  • Formation and Characterization of Highly Interfacial Hybrid Nanocomposites
    Rev.Adv.Mater.Sci.Formation and characterization 10 (2005) 239-242 of highly interfacial hybrid nanocomposites 239 FORMATION AND CHARACTERIZATION OF HIGHLY INTERFACIAL HYBRID NANOCOMPOSITES B.S. Mitchell Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA Received: May 05, 2005 Abstract. The formation and characterization of highly interfacial hybrid nanocomposites is de- scribed. The nanocomposites are formed by a two step, near net-shape manufacturing process that includes nanoparticle formation via high energy ball-milling followed by consolidation via hot isostatic pressing. Two types of hybrid materials are described: metal/ceramic nanocomposites, in which corrosion and mechanical properties are highlighted; and polymer/ceramic nanocomposites, in which proton conductivity is described. The influence of processing param- eters and interfacial characteristics of the nanocomposites on selected properties are described, as well as recent advances in contamination control during nanoparticle formation and the effect of contaminants on nanocomposites properties. 1. INTRODUCTION posites will be considered, followed by a descrip- tion of proton conduction in hybrid polymer/ceramic The high surface to volume ratios inherent to nanocomposite membranes. nanoparticles of all materials classes make them attractive for a variety of applications where surface 2. EXPERIMENTAL area, interfacial area, and an ability to modify sur- faces are important. Although most applications in- All nanocomposites were formed using near net- volve the formation and manipulation of surfaces, shape manufacturing technology (see Fig. 1), which and some processes are strongly dependent upon involves high energy ball milling to form nanoparticles, surface properties; e.g., catalytic processes, there followed by consolidation using Hot Isostatic Press- are some processes for which surface interactions ing (HIP).
    [Show full text]
  • CERAMICS I and II GRADES 9-12 EWING PUBLIC SCHOOLS 2099 Pennington Road Ewing, NJ 08618 Board Approval Date: August 29, 2016 M
    CERAMICS I AND II GRADES 9-12 EWING PUBLIC SCHOOLS 2099 Pennington Road Ewing, NJ 08618 Board Approval Date: August 29, 2016 Michael Nitti Produced by: James Woidill, Supervisor Superintendent In accordance with The Ewing Public Schools’ Policy 2230, Course Guides, this curriculum has been reviewed and found to be in compliance with all policies and all affirmative action criteria. Table of Contents Page Course Description and Rationale 1 Scope and Sequence of Essential Learning: Ceramics I: Unit 1: Introduction to Ceramics/History 2 Unit 2: Procedures, Properties and Vocabulary of Clay 5 Unit 3: Hand-Building Techniques and Glazing 8 Unit 4: Refining, Finishing and Glazing 11 Unit 5: The Firing Process 14 Ceramics II: Unit 6: Hand-Building/Throwing Techniques 17 Unit 7: Exploring the Creative Process 20 Unit 8: Art in a Historical and Cultural Context 23 Unit 9: Contemporary Ceramists/Careers in Ceramics 26 Ceramics I and II Worksheet 29 Ceramic Critique Form 30 Art Criticism Scoring Guide 31 Glossary of Ceramic Terms 33 1 Course Description and Rationale Ceramics I: Ceramics I is an introduction to working with clay and understanding the ceramic process from start to finish. The relationship between form and function will be critically examined as students learn basic hand building and techniques. The direction of their work will evolve as they reflect on their changing definitions of art. Ceramics I is designed for students who have never had ceramics at the high school level. Students are taught how to build pottery by use of pinch, coil and slab methods of construction.
    [Show full text]
  • Environmental Applications of Engineered Nanomaterials: Synthesis and Characterization
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en PhD thesis Environmental Applications of Engineered Nanomaterials: Synthesis and Characterization Ahmad Mohamed Ahmad Abo Markeb September 2017 Title: Environmental Applications of Engineered Nanomaterials: Synthesis and Characterization Realized by: Ahmad Mohamed Ahmad Abo Markeb Supervised by: Dr. Xavier Font & Dr. Amanda Alonso PhD program in Environmental Science and Technology Departament d'Enginyeria Química Biològica i Ambiental. Escola d'Enginyeria Universitat Autònoma de Barcelona (UAB) Part of the work presented here was developed in the framework of the following project: Desarrollo de una nueva generación de nanoestructuras para la eliminación de gases de efecto invernadero (NANO-GEI). Founded by: Fundación Areces. Xavier Font Segura i Amanda Alonso González, professors del Departament d'Enginyeria Química Biològica i Ambiental de la Universitat Autònoma de Barcelona, CERTIFIQUEM: Que el Llicenciat en Químiques, Ahmad Mohamed Ahmad Abo Markeb, ha realitzat sota la nostra direcció́ el treball que, amb títol Environmental Applications of Engineered Nanomaterials: Synthesis and Characterization, es presenta en aquesta memòria, la qual constitueix la seva Tesi per optar al Grau de Doctor per la Universitat Autònoma de Barcelona.
    [Show full text]