Sound in the Ocean

Total Page:16

File Type:pdf, Size:1020Kb

Sound in the Ocean This article was published in 1999 and has not been updated or revised. Sounding Out the Ocean’s Secrets he oceans of Earth cover more than 70 percent sci en t i st s a n d en gi n eer s wen t on t o d evi se even m ore of the planet’s surface, yet, until quite recently, sophi st i ca t ed i n st r u m en t s f or f i n d i n g su bm a r i n es d u r i n g T we knew less about their depths than we did both World Wars. about the surface of the Moon. Distant as it is, the Today, researchers apply their knowledge of how Moon has been far more accessible to study because sou n d t r a vels u n d er wa t er t o ca r r y ou t m yr i a d t a sks, su ch astronomers long have been able to look at its surface, as detecting nuclear explosions, earthquakes, and under- first with the naked eye and then with the telescope— water volcanic eruptions. A nd just as astronomers use both instruments that focus light. A nd, with telescopes light to probe the secrets of the atmosphere, scientists in a tuned to different wavelengths of light, modern field called acoustical oceanography use sound to study astronomers can not only analyze Earth’s atmosphere, the temperature and structure of Earth’s oceans—mea- but also determine the temperature and composition of surements crucial to our ability to understand global cli- the Sun or other stars many hundreds of light-years mate change. Researchers in biological acoustics also use away. Until the twentieth century, however, no analo- sound to study the behavior of marine mammals and gous instruments were available for the study of Earth’s their responses to human-generated underwater noise, oceans: Light, which can travel trillions of miles through helping to guide policies for protecting ocean wildlife. the vast vacuum of space, cannot penetrate very far in All of these modern uses of underwater acoustics are sea wa t er. founded on investigative work, dating back centuries, It turns out that, for penetrating water, the phe- into how sound behaves in the different media of air and nomenon of choice is sound. water. These early investigations at first had no practi- Had the world known how to harness the extraordi- cal application ; rather, they were pu rsu ed by cu riou s nary ability of sound to travel researchers interested in a basic through water in 1912, the understanding of nature. As Titanic might have had some later investigators began to warning of the iceberg that build on these foundations, sent the luxury liner to the however, they laid the ground- bottom of the N orth Atlantic work for the development of and took the lives of 1,522 tools and techniques that have passengers and crew. The widespread applications today. tragic event spurred the devel- opm en t of t ools for echoloca- tion, or echo ranging—the Water is an excellent medium technique of detecting distant for sound transmission. Sound object s by sen din g ou t pu lses of travels almost five times faster sou n d a n d li st en i n g f or t he in water than in air. © Digital Vision return echo. Using these tools, NATIONAL ACADEMY OF SCIENCES Good Vibrat ions Curious investigators long have been fascinated by sound and the way it travels in water. As early as 1490, Leonardo da Vinci observed: “If you cause your ship to stop and place the head of a long tube in the water and place the outer extremity to your ear, you will hear ships at a great distance from you.” In 1687, the first mathematical theory of sound propa- gation was published by Sir Isaac Newton in his Philosophiae N aturalis Principia Mathematica. Investigators were measuring the speed of sound in air beginning in the mid-seventeenth century, but it was not until 1826 that Daniel Colladon, a Swiss In 1826, Charles Sturm (left) and Daniel Colladon physicist, and Charles Sturm, a French mathematician, (right) made the first accurate measurement of the speed accurately measured its speed in water. Using a long of sound in water. Sturm rang a submerged bell and tube to listen underwater (as da Vinci had suggested), Colladon used a stopwatch to note the length of time it they recorded how fast the sound of a submerged bell took the sound to travel across Lake Geneva. Their mea- traveled across Lake Geneva. Their result—1,435 su rem en t of 1,435 m et er s per secon d wa s on ly 3 m et er s per meters (1,569 yards) per second in water of 1.8 second off from the speed accepted today (reprinted with permission from the A coustical Society of A merica). degrees Celsius (35 degrees Fahrenheit)—was only 3 meters per second off from the speed accepted today. study of acoustics. The recipient of the Nobel Prize What these investigators demonstrated was that for Physics in 1904 for his successful isolation of the water—whether fresh or salt—is an excellent medium element argon, Lord Rayleigh made key discoveries in for sound, transmitting it almost five times faster than the fields of acoustics and optics that are critical to its speed in air! the theory of wave propagation in fluids. Among But how does sound travel? Sound is a physical other things, Lord Rayleigh was the first to describe a phenomenon, produced when an object vibrates and sound wave as a mathematical equation (the basis of generates a series of pressure waves that alternately all theoretical work on acoustics) and the first to compress and decompress the molecules of the air, describe how small particles in the atmosphere scatter water, or solid through which the waves travel. These certain wavelengths of sunlight, a principle that also cycles of compression and rarefaction, as the decom- applies to the behavior of sound waves in water. pression is called, can be described in terms of their frequency, the number of wave cycles per secon d, expressed in H ertz. The human voice, for example, Navigation by Sound can generate frequencies between 100 and 10,000 Hertz and the human ear can detect frequencies of 20 Through the ages, fishermen and seafarers had to 20,000 Hertz. Dogs and bats are examples of taken advantage of the way sound travels through many creatures that can hear sounds at much higher water and used rudimentary techniques of echoloca- frequencies—up to 160,000 Hertz. Whales and ele- tion. In the days of the ancient Phoenicians, for phants, at the other end of the spectrum, generate example, fishermen gauged the distance to a headland sounds at frequencies in the range of 15 to 35 Hertz, concealed by fog by making a loud noise, such as ring- mostly below human hearing and thus called subson- ing bells, and listening for the echoes. By 1902, ships ic, or infrasonic. Sound waves, like light waves, also passing along the American coast were warned of hid- can be described in terms of their wavelength—the den shoals by underwater bells placed on stationary distance between the peaks of two waves; the lower lightships. Ten years later, the Titanic tragedy moti- the frequency, the longer the wavelength. vated the Submarine Signal Company of Boston (now In 1877 and 1878, the British scientist John part of Raytheon Company) and others to develop William Strutt, third Baron Rayleigh, published his more active devices that would warn of icebergs and two-volume seminal work, The Theory of Sound, often other navigational hazards. Within a week of the regarded as marking the beginning of the modern tragedy, L. R. Richardson filed a patent with the 2 BEYOND DISCOVERY This article was published in 1999 and has not been updated or revised. British patent office for echo ranging with airborne U.S.S. Semmeswere at a loss to explain or correct the sound, following a month later with a patent applica- ship’s sonar problems during exercises in the waters tion for the underwater equivalent. The first function- off Guantánamo Bay, Cuba. For some reason, the ing echo ranger, however, was patented in the United performance of the devices consistently deteriorated in States in 1914 by Reginald A. Fessenden, who worked the afternoon; they sometimes failed to return echoes for the Submarine Signal Company. Fessenden’s at all. The captain of the Semmes sought help from device was an electric oscillator that emitted a low-fre- the Woods Hole Oceanographic Institution (WHOI) quency noise, then switched to a receiver to listen for in Woods H ole, Massachusetts. Columbus Iselin, then echoes; it was able to detect an iceberg underwater associate director of WH OI, joined the Semmes with from 2 miles away, although it could not precisely his laboratory’s research ship, Atlantis, to investigate determine its direction. this puzzling “afternoon effect.” More sophisticated echo sounders were developed during World War I by the allies, but they were no match for the German U-boat menace because they A Sound-Free Shadow Zone could not locate and track a moving object. Shortly after the war, however, H . Lichte, a German scientist The scientists had at their disposal a new device looking into using acoustics to clear German harbors of called a bathythermograph, or BT, invented in 1937 by mines, offered a theory on the bending, or refracting, Athelstan Spilhaus of WHOI and the Massachusetts of sound waves in seawater that would provide clues to Institute of Technology (MIT).
Recommended publications
  • Barotropic Tide in the Northeast South China Sea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2004-10 Barotropic Tide in the Northeast South China Sea Beardsley, Robert C. Monterey, California. Naval Postgraduate School Vol.29, no.4, October 2004 http://hdl.handle.net/10945/35040 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 29, NO. 4, OCTOBER 2004 1075 Barotropic Tide in the Northeast South China Sea Robert C. Beardsley, Timothy F. Duda, James F. Lynch, Senior Member, IEEE, James D. Irish, Steven R. Ramp, Ching-Sang Chiu, Tswen Yung Tang, Ying-Jang Yang, and Guohong Fang Abstract—A moored array deployed across the shelf break in data using satellite advanced very high-resolution radiometer, the northeast South China Sea during April–May 2001 collected altimeter, and other microwave sensors [8]. sufficient current and pressure data to allow estimation of the The SCS study area was centered over the shelf break near barotropic tidal currents and energy fluxes at five sites ranging in depth from 350 to 71 m. The tidal currents in this area were 21 55 N, 117 20 E, approximately 370 km west of the mixed, with the diurnal O1 and K1 currents dominant over the southern tip of Taiwan (Fig. 1). This area was chosen in part upper slope and the semidiurnal M2 current dominant over the for three reasons: 1) large-amplitude high-frequency internal shelf. The semidiurnal S2 current also increased onshelf (north- waves generated near the Luzon Strait propagate through the ward), but was always weaker than O1 and K1.
    [Show full text]
  • Ocean Acoustic Tomography: a Missing Element of the Ocean Observing System
    UACE2017 - 4th Underwater Acoustics Conference and Exhibition OCEAN ACOUSTIC TOMOGRAPHY: A MISSING ELEMENT OF THE OCEAN OBSERVING SYSTEM Brian Dushawa, John Colosib, Timothy Dudac, Matthew Dzieciuchd, Bruce Howee, Arata Kanekof, Hanne Sagena, Emmanuel Skarsoulisg, Xiaohua Zhuh aNansen Environmental and Remote Sensing Center, Thormøhlens gate 47, 5006 Bergen, NORWAY bNaval Postgraduate School, 833 Dyer Road, Monterey, CA 93943 USA cApplied Ocean Physics and Engineering, MS 11, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA dScripps Institution of Oceanography, University of California, San Diego 92093-0225 USA eOcean and Resources Engineering, University of Hawaii at Manoa, Honolulu HI 96822 USA fInstitute of Engineering, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima, JAPAN 739-8511 gFoundation for Research and Technology Hellas, Institute of Applied and Computational Mathematics, P.O. Box 1385, GR-71110 Heraklion, GREECE hSecond Institute of Oceanography, State Oceanic Administration, 36 Baochubei Road, Hangzhou, CHINA 310012 Brian Dushaw, Nansen Environmental and Remote Sensing Center, Thormøhlens gate 47, 5006 Bergen, NORWAY fax: (+47) 55 20 58 01, e-mail: [email protected] Abstract: Ocean acoustic tomography now has a long history with many observations and experiments that highlight the unique capabilities of this approach to detecting and understanding ocean variability. Examples include observations of deep mixing in the Greenland Sea, mode-1 internal tides radiating far into the ocean interior (coherent in time and space), relative vorticity on multiple scales, basin-wide and antipodal measures of temperature, barotropic currents, coastal processes in shallow water, and Arctic climate change. Despite the capabilities, tomography, and its simplified form thermometry, are not yet core observations within the Ocean Observing Systems (OOS).
    [Show full text]
  • River Depletion Due to Pumping of a Well Near a River Glover
    River Depletion due to Pumping of a Well Near a River Glover OFFICERS OF THE UNION, 1953-58 SECTIONS OF THE UNION JOHN A. FLEMING, Honorary President Section of Geodesy JAMES B. MACELWANE, President ALBERT J HosKiNsoN, President MAURICE EWING, Vice President AMERICAN GEOPHYSICAL UNION Section of Seismology Ross JOHN PUTNAM MARBLE, General Secretary R. HEINRICH, President Section of Meteorology WALDO E. SMITH. Executive Secretary EXECUTIVE COMMITTEE PHIL E. CHURCH, President 1530 P Street, N. W. Section of Terrestrial Magnetism Washington 5, D. C. and Electricity VICTOR EX-OFFICIO MEMBERS American National Committee VACQUIER, President of the Section of Oceanography CHAIRMAN, NATIONAL RESEARCH COUNCIL International Union of Geodesy and Geophysics RIciimu) H. FLEMING, President CHAIRMEN, DIVISIONS OF THE and Committee on Geophysics of the Section of Volcanology NATIONAL RESEARCH COUNCIL Wii.i.awm F. Fostiwo, President International Relations NATIONAL RESEARCH COUNCIL Section of Hydrology Physical Sciences HAROLD G. Wrud, President Chemistry and Chemical Technology WASHINGTON, D. C. Geology Section of Tectonophysics and Geography FRANCIS BIRCH, President Biology and Agriculture AMERICAN OFFICERS International Union of Geodesy and 1530 P Street, N.W. Geophysics Washington 5, D. C. October 22, 1954 Messrs. liobert E. Glover & Glenn G. Balmer, Bureau of Reclamation Bldg. 53, Denver Federal Center Denver 2, Colorado Gentlemen: Thank you for your letter of October 13 with which you forwarded the closing discussion on your paper relating to river depletion. We are for- warding this, together with Hantush's discussion of your paper, to the Editor and in due course will write to you further. We are calling the Editor's attention to the closing paragraptf your letter.
    [Show full text]
  • OCEANS ´09 IEEE Bremen
    11-14 May Bremen Germany Final Program OCEANS ´09 IEEE Bremen Balancing technology with future needs May 11th – 14th 2009 in Bremen, Germany Contents Welcome from the General Chair 2 Welcome 3 Useful Adresses & Phone Numbers 4 Conference Information 6 Social Events 9 Tourism Information 10 Plenary Session 12 Tutorials 15 Technical Program 24 Student Poster Program 54 Exhibitor Booth List 57 Exhibitor Profiles 63 Exhibit Floor Plan 94 Congress Center Bremen 96 OCEANS ´09 IEEE Bremen 1 Welcome from the General Chair WELCOME FROM THE GENERAL CHAIR In the Earth system the ocean plays an important role through its intensive interactions with the atmosphere, cryo- sphere, lithosphere, and biosphere. Energy and material are continually exchanged at the interfaces between water and air, ice, rocks, and sediments. In addition to the physical and chemical processes, biological processes play a significant role. Vast areas of the ocean remain unexplored. Investigation of the surface ocean is carried out by satellites. All other observations and measurements have to be carried out in-situ using research vessels and spe- cial instruments. Ocean observation requires the use of special technologies such as remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), towed camera systems etc. Seismic methods provide the foundation for mapping the bottom topography and sedimentary structures. We cordially welcome you to the international OCEANS ’09 conference and exhibition, to the world’s leading conference and exhibition in ocean science, engineering, technology and management. OCEANS conferences have become one of the largest professional meetings and expositions devoted to ocean sciences, technology, policy, engineering and education.
    [Show full text]
  • On Ocean Waveguide Acoustics
    BOOKREVIEW ___________________________________________________ GEORGE V. FRISK ON OCEAN WAVEGUIDE ACOUSTICS acoustic waves with multilayered media is also an ac­ ACOUSTIC WAVEGUIDES: APPLICATIONS TO OCEANIC SCIENCE tive area of research in underwater acoustics. By C. Allen Boyles, Principal Professional Staff, In recent years, the inverse problem of determining The Johns Hopkins University Applied Physics Laboratory oceanographic properties from acoustic measurements Published by John Wiley & Son, New York, 1984. 321 pp. $46.95 has become increasingly important and has given rise to the term "acoustical oceanography," a variant of "ocean acoustics" that emphasizes the oceanograph­ ic implications of acoustic experiments. A major de­ The field of ocean acoustics is an active area of the­ velopment in this area is time-of-flight acoustic oretical and experimental research, with a continual­ tomography in which front and eddy intensity and ly expanding body of literature in research journals variability over hundreds of kilometers are measured and textbooks. Boyles' book is a welcome addition to acoustically. In ocean-bottom acoustics, direct inverse the literature and provides a useful text for both stu­ methods are being developed that utilize some mea­ dents and practitioners in the field. surement of the acoustic field, such as the plane wave Although electromagnetic waves are strongly ab­ reflection coefficient of the bottom, as direct input to sorbed by water, acoustic waves can, under the prop­ algorithms for determining the acoustic properties of er conditions, propagate over hundreds, even thou­ the bottom. This approach is to be contrasted with sands, of miles through the ocean. As a result, sound conventional techniques in which forward models for waves and sonar assume the major role in the ocean computing the acoustic field are run for different bot­ that electromagnetic waves and radar play in the at­ tom properties until best fits to the data are obtained.
    [Show full text]
  • A Geochemist in His Garden of Eden
    A GEOCHEMIST IN HIS GARDEN OF EDEN WALLY BROECKER 2016 ELDIGIO PRESS Table of Contents Chapter 1 Pages Introduction ................................................................................................................. 1-13 Chapter 2 Paul Gast and Larry Kulp ......................................................................................... 14-33 Chapter 3 Phil Orr...................................................................................................................... 34-49 Chapter 4 230Th Dating .............................................................................................................. 50-61 Chapter 5 Mono Lake ................................................................................................................ 62-77 Chapter 6 Bahama Banks .......................................................................................................... 78-92 Chapter 7 Doc Ewing and his Vema ........................................................................................ 93-110 Chapter 8 Heezen and Ewing ................................................................................................ 111-121 Chapter 9 GEOSECS ............................................................................................................. 122-138 Chapter 10 The Experimental Lakes Area .............................................................................. 139-151 Table of Contents Chapter 11 Sea Salt .................................................................................................................
    [Show full text]
  • Christopher Bassett Dept
    Christopher Bassett Dept. of Applied Ocean Physics and Engineering Phone: (508) 289-3891 Woods Hole Oceanographic Institution Email: [email protected] Woods Hole, Massachusetts Education 2013 Ph.D. Mechanical Engineering, University of Washington 2010 M.S. Mechanical Engineering, University of Washington 2007 B.S. Mechanical Engineering, University of Minnesota Professional Experience 2013-pres. Postdoctoral Scholar, Department of Applied Ocean Physics & Engineering, Woods Hole Oceanographic Institution 2009-2013 Graduate Research Assistant, Mechanical Engineering/Applied Physics Laboratory, University of Washington 2008-2009 Teaching Assistant, Department of Physics, University of Minnesota Research Interests Passive acoustics - Measurements and modeling of vessel noise - Mapping and modeling course-grained sediment transport Broadband acoustic scattering - Scattering from rough surfaces - Discrimination and quantification of targets near interfaces - Acoustic remote sensing of sea ice and oil spills in/under sea ice - Scattering from marine organisms - Broadband scattering from suspended sediment Marine hydrokinetic energy (MHK) - Radiated noise measurements and acoustic impacts modeling of MHK devices - Instrumentation for environmental impacts monitoring around MHK devices Peer-Reviewed Publications J.1 Polayge, B., C. Bassett, M. Holt, J. Wood, and S. Barr (under revision). Estimated detection of tidal turbine operating noise in Admiralty Inlet, Puget Sound, Washington, Journal of Oceanic Engineering. J.2 Bassett, C., A.C. Lavery, T. Maksym, and J. Wilkinson (2015). Laboratory measurements of high-frequency, acoustic broadband backscattering from sea ice and crude oil, Journal of the Acoustical Society of America, 137(1), EL32-EL38. J.3 Bassett, C., J. Thomson, P. Dahl and B. Polagye (2014). Flow-noise and turbulence in two tidal channels, Journal of the Acoustical Society of America, 135(4), 1764-1774.
    [Show full text]
  • THE OCEANOGRAPHY SOCIETY BIENNIAL SCIENTIFIC MEETING 2-5 April 2001 Miami Beach, Florida USA
    THE OCEANOGRAPHY SOCIETY BIENNIAL SCIENTIFIC MEETING 2-5 April 2001 Miami Beach, Florida USA Listed alphabetically by first author. Asterisk(*) indicates invited speaker. ALLARD, Richard ~, John Christiansen 2, Steve *APEL, John R.' Williams ~ and Larry Jendro ~ From Pictures to Measurements: Four Decades of The Distributed Integrated Ocean Prediction System Ocean Remote Sensing (DIOPS) With the arrival of more-or-less continuous satellite The Distributed Integrated Ocean Prediction System data streams and fully vetted measurement capabilities, (DIOPS) is a wave, tide and surf prediction system ocean remote measurement has gone from being con- designed to provide U.S. Navy and U.S. Joint Forces a fined to the province of specialists to finding its way capability to predict wave and surf conditions at any into the toolkit of working oceanographers. While it has given location, worldwide. DIOPS contains a suite of taken well over three decades to come about, data from wave, tide and surf models (WAM, REFDIE STWAVE, a variety of sensors can currently give information of PCTIDES and SURF3.0) which can be run in a nested much interest across the spectrum of disciplines in our fashion. DIOPS is designed to operate under an object- science, even to those concerned with the sea floor if oriented framework and provides access to environ- acoustics is included as a remote sensing method. A mental inputs via the Tactical Environmental Data review is given of some sensor outputs, both historic Server (TEDS). DIOPS will be installed at the Naval and current, and examples are presented of remote Pacific Meteorology and Oceanography Center in San sensing contributions to the understanding of various Diego in Spring 2001, where a Beta-test site with an processes and phenomena taking place in the sea.
    [Show full text]
  • Walter Heinrich Munk
    WALTER HEINRICH MUNK 19 october 1917 . 8 february 2019 PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY VOL. 163, NO. 3, SEPTEMBER 2019 biographical memoirs alter Heinrich Munk was a brilliant scholar and scientist who was considered one of the greatest oceanographers of W his time. He was born in Vienna, Austria in 1917 as the Austro-Hungarian Empire was declining and just before the death of one of its great artists, Gustav Klimt. Hedwig Eva Maria Kiesler, who later changed her name to Hedy Lamarr to accommodate her film career, was one of Walter’s childhood friends.1 Walter’s mother, Rega Brunner,2 the daughter of a wealthy Jewish banker, divorced Walter’s father in 1927 and married Dr. Rudolf Engelsberg in 1928. By age 14, Walter apparently had not distinguished himself in his school studies and announced that he intended to become a ski instructor. Walter later claimed that it was this that caused his mother to send him to work at a family bank in New York. The validity of this claim should be tempered by the political turmoil in Germany and its proximity to Austria. In any case, Walter left Vienna in 1932. In New York, he attended Silver Bay Preparatory School for Boys on Lake George and then became a lowly employee in the Cassel Bank, which was associated with the family’s Brunner Bank in New York. In the meantime, Walter restarted his education at Columbia’s Extension School. He greatly disliked the work at the bank and apparently made a number of mistakes, which didn’t endear him to the owners of the Cassel Bank.
    [Show full text]
  • Assessment of the Effects of Noise and Vibration from Offshore Wind Farms on Marine Wildlife
    ASSESSMENT OF THE EFFECTS OF NOISE AND VIBRATION FROM OFFSHORE WIND FARMS ON MARINE WILDLIFE ETSU W/13/00566/REP DTI/Pub URN 01/1341 Contractor University of Liverpool, Centre for Marine and Coastal Studies Environmental Research and Consultancy Prepared by G Vella, I Rushforth, E Mason, A Hough, R England, P Styles, T Holt, P Thorne The work described in this report was carried out under contract as part of the DTI Sustainable Energy Programmes. The views and judgements expressed in this report are those of the contractor and do not necessarily reflect those of the DTI. First published 2001 i © Crown copyright 2001 EXECUTIVE SUMMARY Main objectives of the report Energy Technology Support Unit (ETSU), on behalf of the Department of Trade and Industry (DTI) commissioned the Centre for Marine and Coastal Studies (CMACS) in October 2000, to assess the effect of noise and vibration from offshore wind farms on marine wildlife. The key aims being to review relevant studies, reports and other available information, identify any gaps and uncertainties in the current data and make recommendations, with outline methodologies, to address these gaps. Introduction The UK has 40% of Europe ’s total potential wind resource, with mean annual offshore wind speeds, at a reference of 50m above sea level, of between 7m/s and 9m/s. Research undertaken by the British Wind Energy Association suggests that a ‘very good ’ site for development would have a mean annual wind speed of 8.5m/s. The total practicable long-term energy yield for the UK, taking limiting factors into account, would be approximately 100 TWh/year (DTI, 1999).
    [Show full text]
  • 3 Affected Environment and Environmental Consequences
    Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 Draft Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing TABLE OF CONTENTS 3 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES ....................................... 3.0-1 3.0 Introduction ........................................................................................................... 3.0-1 3.0.1 Navy Compiled and Generated Data .................................................................. 3.0-1 3.0.1.1 Marine Species Monitoring and Research Programs ......................... 3.0-1 3.0.1.2 Marine Species Density Database....................................................... 3.0-2 3.0.1.3 Developing Acoustic and Explosive Criteria and Thresholds .............. 3.0-3 3.0.1.4 Aquatic Habitats Database ................................................................. 3.0-4 3.0.2 Ecological Characterization of the Study Area .................................................... 3.0-4 3.0.2.1 Biogeographic Classifications.............................................................. 3.0-4 3.0.2.2 Bathymetry ....................................................................................... 3.0-12 3.0.2.3 Currents, Circulation Patterns, and Water Masses .......................... 3.0-14 3.0.2.4 Ocean Fronts ..................................................................................... 3.0-27 3.0.2.5 Abiotic Substrate .............................................................................. 3.0-27
    [Show full text]
  • WILLIAM MAURICE EWING May 12, 1906-May 4, 1974
    NATIONAL ACADEMY OF SCIENCES WILLIAM MAURICE Ew ING 1906—1974 A Biographical Memoir by ED W A R D C . B ULLARD Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1980 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. WILLIAM MAURICE EWING May 12, 1906-May 4, 1974 BY EDWARD C. BULLARD* CHILDHOOD, 1906-1922 ILLIAM MAURICE EWING was born on May 12, 1906 in W Lockney, a town of about 1,200 inhabitants in the Texas panhandle. He rarely used the name William and was always known as Maurice. His paternal great-grandparents moved from Kentucky to Livingston County, Missouri, at some date before 1850. Their son John Andrew Ewing, Maurice's grandfather, fought for the Confederacy in the Civil War; while in the army he met two brothers whose family had also come from Kentucky to Missouri before 1850 and were living in De Kalb County. Shortly after the war he married their sister Martha Ann Robinson. Their son Floyd Ford Ewing, Maurice's father, was born in Clarkdale, Mis- souri, in 1879. In 1889 the family followed the pattern of the times and moved west to Lockney, Texas. Floyd Ewing was a gentle, handsome man with a liking for literature and music, whom fate had cast in the unsuitable roles of cowhand, dryland farmer, and dealer in hardware and farm implements. Since he kept his farm through the *This memoir is a corrected and slightly amplified version of one published by the Royal Society in their Biographical Memoirs (21:269-311, 1975).
    [Show full text]