Appendix 3. Species Inventory of the Athabasca Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uranium City, Black Lake, Camsell Portage, Fond Du Lac, Stony Rapids, and Wollaston/Hatchet Lake
CanNorth 2015 AthabascaUranium Working City Group Environmental Monitoring Program ABOUT THE AWG PROGRAM The Athabasca Working Group (AWG) environmental monitoring program began in the Athabasca region of northern Saskatchewan in 2000. The program provides residents with opportunities to test the environment around their communities for parameters that could come from uranium mining and milling operations. These parameters can potentially be spread by water flowing from lakes near the uranium operations, and small amounts may also be spread through the air. In order to address local residents’ concerns, lakes, rivers, plants, wildlife, and air quality are tested each yeah near the northern communities of Uranium City, Black Lake, Camsell Portage, Fond du Lac, Stony Rapids, and Wollaston/Hatchet Lake. The types of plants and animals selected, the locations chosen for sampling, and the sample collections were carried out by, or with the help of, northern community members. The purpose of this brochure is to inform the public of the 2015 environmental monitoring program results in the Uranium City area. STUDY AREA Water, sediment, and fish were sampled from a reference site and a potential exposure site in the Uranium City area in 2015. Fredette Lake was chosen as the reference site because it is not influenced by uranium operations. Black Bay of Lake Athabasca (Black Bay) is referred to as the potential exposure site because it is located downstream of the active uranium operations in northern Saskatchewan. Air quality is monitored at two locations near the community of Uranium City and plant and wildlife samples are collected each year near the community when available. -
Wollaston Road
WOLLASTON LAKE ROAD ENVIRONMENTAL IMPACT STATEMENT Biophysical Environment 4.0 Biophysical Environment 4.1 INTRODUCTION This section provides a description of the biophysical characteristics of the study region. Topics include climate, geology, terrestrial ecology, groundwater, surface water and aquatic ecology. These topics are discussed at a regional scale, with some topics being more focused on the road corridor area (i.e., the two route options). Information included in this section was obtained in full or part from direct field observations as well as from reports, files, publications, and/or personal communications from the following sources: Saskatchewan Research Council Canadian Wildlife Service Beverly and Qamanirjuaq Caribou Management Board Reports Saskatchewan Museum of Natural History W.P. Fraser Herbarium Saskatchewan Environment Saskatchewan Conservation Data Centre Environment Canada Private Sector (Consultants) Miscellaneous publications 4.2 PHYSIOGRAPHY Both proposed routes straddle two different ecozones. The southern portion is located in the Wollaston Lake Plain landscape area within the Churchill River Upland ecoregion of the Boreal Shield ecozone. The northern portion is located in the Nueltin Lake Plain landscape area within the Selwyn Lake Upland ecoregion of the Taiga Shield ecozone (Figure 4.1). (SKCDC, 2002a; Acton et al., 1998; Canadian Biodiversity, 2004; MDH, 2004). Wollaston Lake lies on the Precambrian Shield in northern Saskatchewan and drains through two outlets. The primary Wollaston Lake discharge is within the Hudson Bay Drainage Basin, which drains through the Cochrane River, Reindeer Lake and into the Churchill River system which ultimately drains into Hudson Bay. The other drainage discharge is via the Fond du Lac River to Lake Athabasca, and thence to the Arctic Ocean. -
Athabasca Basin Communities Renew Partnership with the Uranium Mining Industry
Athabasca Basin Communities Renew Partnership with the Uranium Mining Industry Saskatoon, Saskatchewan, Canada, June 21, 2016 . The Athabasca communities, Cameco Corporation (Cameco) and AREVA Resources Canada Inc. (AREVA) are proud to announce the signing of a collaboration agreement that builds upon an enduring partnership in the development of uranium resources in the Athabasca Basin. The Ya’Thi Néné (“Lands of the North” in Dene) collaboration agreement confirms the continued support of the communities historically and traditionally associated with the Cigar Lake, McClean Lake and Rabbit Lake uranium mining operations. The comprehensive and unique agreement builds on the existing relationships and commercial arrangements between Cameco, AREVA and the three First Nation communities of Black Lake, Fond du Lac and Hatchet Lake, and the four communities of Stony Rapids, Wollaston Lake, Uranium City and Camsell Portage. “The renewed partnership agreement gives the Athabasca communities certainty, to help ensure that the companies operate sustainably, bringing positive changes for the future generation.” Diane McDonald, lead negotiator for the Athabasca communities “By working with industry, people living in the north have found ways to enhance the capacity and vitality of their communities while protecting their traditional values and lands. This agreement assures that strong partnership will continue.” Tim Gitzel, president and CEO of Cameco “This agreement further solidifies our longstanding collaboration with these communities. It speaks to our joint vision and commitment to the prosperity of northern Saskatchewan for decades to come.” Vincent Martin, president and CEO of AREVA Resources Canada The Ya’Thi Néné collaboration agreement builds on the existing impact management agreement signed in 1999. -
Project Management for Decommissioning of Hope Brook
Uranium Development & Exploration The Athabasca Basin, Northern Saskatchewan July 2020 | Corporate Update Cautionary Statements & References This presentation and the information contained herein is designed to help you understand management’s current views, and may not be appropriate for other purposes. This presentation contains information relating to other companies and provincial infrastructure, and the plans and availability thereof, derived from third-party publications and reports which Denison believes are reliable but have not been independently verified by the Company. Certain information contained in this presentation constitutes “forward-looking information”, within the meaning of the United States Private Securities Litigation Reform Act of 1995 and similar Canadian legislation concerning the business, operations and financial performance and condition of Denison. Generally, these forward-looking statements can be identified by the use of forward-looking terminology such as “plans”, “expects”, “budget”, “scheduled”, “estimates”, “forecasts”, “intends”, “anticipates”, or “believes”, or the negatives and / or variations of such words and phrases, or state that certain actions, events or results “may”, “could”, “would”, “might” or “will be taken”, “occur”, “be achieved” or “has the potential to”. In particular, this presentation contains forward-looking information pertaining to the results of, and estimates, assumptions and projections provided in, the PFS, including future development methods and plans, market prices, costs -
Wheeler River Project Provincial Technical Proposal and Federal Project Description
Wheeler River Project Provincial Technical Proposal and Federal Project Description Denison Mines Corp. May 2019 WHEELER RIVER PROJECT TECHNICAL PROPOSAL & PROJECT DESCRIPTION Wheeler River Project Provincial Technical Proposal and Federal Project Description Project Summary English – Page ii French – Page x Dene – Page xx Cree – Page xxviii PAGE i WHEELER RIVER PROJECT TECHNICAL PROPOSAL & PROJECT DESCRIPTION Summary Wheeler River Project The Wheeler River Project (Wheeler or the Project) is a proposed uranium mine and processing plant in northern Saskatchewan, Canada. It is located in a relatively undisturbed area of the boreal forest about 4 km off of Highway 914 and approximately 35 km north-northeast of the Key Lake uranium operation. Wheeler is a joint venture project owned by Denison Mines Corp. (Denison) and JCU (Canada) Exploration Company Ltd. (JCU). Denison owns 90% of Wheeler and is the operator, while JCU owns 10%. Denison is a uranium exploration and development company with interests focused in the Athabasca Basin region of northern Saskatchewan, Canada with a head office in Toronto, Ontario and technical office in Saskatoon, Saskatchewan. Historically Denison has had over 50 years of uranium mining experience in Saskatchewan, Elliot Lake, Ontario, and in the United States. Today, the company is part owner (22.5%) of the McClean Lake Joint Venture which includes the operating McClean Lake uranium mill in northern Saskatchewan. To advance the Project, Denison is applying an innovative approach to uranium mining in Canada called in situ recovery (ISR). The use of ISR mining at Wheeler means that there will be no need for a large open pit mining operation or multiple shafts to access underground mine workings; no workers will be underground as the ISR process is conducted from surface facilities. -
Polar Bear Predation on Beluga in the Canadian Arctic
162 SHORTPAPERS AND NOTES 4- 4- . 1972. Prime aux travailleurs du mondeEllesmere Island,Northwest Territories. As polaire. In: W. P. Adams and F. Helleiner none of the fifteen local hunters had ever wit- (eds), International Geography 1972 (Papers nessed such an event, and only one had ever submitted to the 22nd InternationalGeo- heard of it before, I assumed bear predationon graphicalCongress, Montreal), University whales to be very rare,and consequently of Toronto Press, 1 : 381-84. recorded whatever information I could obtain SBuck, W. K. and J. F. Henderson. 1965. The at the time. role of mineral resources in the development According to the hunter's narrative, move- andcolonization of northernCanada. In: ment of a partiallygrounded iceberg about W. V. Bladen, (ed) Canadian population and 200 metres offshore had preventedfreezing of a northern colonization, University of Toronto smallarea of watersurrounding the berg. Press,p. 106. Winter trapment of whales is known to occur during unusual conditionsof sea-ice formationl, aDubnie, A. and W. K. Buck. 1965. Progress of and as the open sea was at least 30 kilometres mineraldevelopment in northern Canada. distantfrom this localityin March it seems Polar Record, 12 (81): 701. probable that a small number of beluga had 7Rea, K. J. 1968. The political economy of the endeavoured to passthe winter inthe open Canadian North. University of Toronto Press, wateralongside this berg. Atsome time in p. 187.. March a medium-sized female bear had caught SWolforth, J. 1971. The evolution and economy and removed an adult female beluga together of the Delta Community. Northern Science with another adult and a grey-coloured sub- ResearchGroup, Department of Indian adult beluga both of unspecified sex; the adult Affairs and Northern Development, Ottawa female beluga was draggedabout 7 metres from (Mackenzie Delta Research Project no. -
Northwest Territories Territoires Du Nord-Ouest British Columbia
122° 121° 120° 119° 118° 117° 116° 115° 114° 113° 112° 111° 110° 109° n a Northwest Territories i d i Cr r eighton L. T e 126 erritoires du Nord-Oues Th t M urston L. h t n r a i u d o i Bea F tty L. r Hi l l s e on n 60° M 12 6 a r Bistcho Lake e i 12 h Thabach 4 d a Tsu Tue 196G t m a i 126 x r K'I Tue 196D i C Nare 196A e S )*+,-35 125 Charles M s Andre 123 e w Lake 225 e k Jack h Li Deze 196C f k is a Lake h Point 214 t 125 L a f r i L d e s v F Thebathi 196 n i 1 e B 24 l istcho R a l r 2 y e a a Tthe Jere Gh L Lake 2 2 aili 196B h 13 H . 124 1 C Tsu K'Adhe L s t Snake L. t Tue 196F o St.Agnes L. P 1 121 2 Tultue Lake Hokedhe Tue 196E 3 Conibear L. Collin Cornwall L 0 ll Lake 223 2 Lake 224 a 122 1 w n r o C 119 Robertson L. Colin Lake 121 59° 120 30th Mountains r Bas Caribou e e L 118 v ine i 120 R e v Burstall L. a 119 l Mer S 117 ryweather L. 119 Wood A 118 Buffalo Na Wylie L. m tional b e 116 Up P 118 r per Hay R ark of R iver 212 Canada iv e r Meander 117 5 River Amber Rive 1 Peace r 211 1 Point 222 117 M Wentzel L. -
University of Alberta
University of Alberta Genetic Population Structure of Walleye (Sander vitreus) in Northern Alberta and Application to Species Management by Lindsey Alison Burke A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Biological Sciences ©Lindsey Alison Burke Fall 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-62977-2 Our file Notre référence ISBN: 978-0-494-62977-2 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque -
Uranium City
Community Meeting Record January 29 – Feb 1, 2019 Uranium City – January 29, 2019 Attendees • Saskatchewan Research Council (SRC) o Ian Wilson o David Sanscartier o Chris Reid o Robyn Morris o John Sprague o Jennifer Brown • Mina Patel (Canadian Nuclear Safety Commission (CNSC)) • Jaynine McCrea (Fond du Lac Nuna Joint Venture (FDLNJV)) • Dean Classen (Uranium City Contracting (UCC)) • Kyle Remus (QMPoints) • Glen Strong (QMPoints) • Emily Jones (Translator) Agenda 1. Prayer 2. Lunch 3. Video 4. Satellite Sites (David) 5. Uranium City Contracting (Dean) 6. Gunnar Overview (Chris) 7. Gunnar Other Site Aspects (Chris) 8. Gunnar Other Site Aspects (QMPoints) 9. Gunnar Tailings (Robyn) 10. Gunnar Tailings (Jaynine) 11. Lorado (Ian) 12. Photo Contest (John) 13. CNSC (Mina) 14. Prize Draws and Close Discussion Satellite Sites Q. Looking at the criteria you have for workers on the project, do you have criteria for a certain number of or percentage of women? A. There is nothing specific, but the wording states that the process is to be all inclusive and non- discriminatory. Q. What about the criteria for equipment usage? Is that including Indigenous? A. It is not specific to Indigenous. The second point is for the equipment, not the operator. 1 Community Meeting Record January 29 – Feb 1, 2019 Q. How is the gamma survey done? Is it on contact? A. The survey is done one meter above the ground. Q. How much soil is required to cover the gamma spots? What is required for protection? A. We are putting 30-50 cm over the hot spots, which is more than enough. -
PAH Sediment Studies in Lake Athabasca and the Athabasca River Ecosystem Related to the Fort Mcmurray Oil Sands Operations: Sources and Trends
© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Web: www.witpress.com Email [email protected] Paper from: Oil and Hydrocarbon Spills III, CA Brebbia (Editor). ISBN 1-85312-922-4 PAH sediment studies in Lake Athabasca and the Athabasca River ecosystem related to the Fort McMurray oil sands operations: sources and trends M, S, Evansl, B. Billeck2, L. Lockhart2, J. P, Bechtold3, M. B. Yunker4 &G. Stern2 ‘National Water Research Institute, Environment Canada, Canada. 2Freshwater Institute, Department ofFisheries and Oceans, Canada, 3Golder Associates Ltd, Canada 4Brentwood Bay, Canada Abstract The oil sands operations in northern Alberta are among the most modem in the world, However, because the operations are extensive and lie on either side of the Athabasca River, there are concerns that they will adversely affect downstream environments such as the Athabasca River, its tributaries, the Peace-Athabasca deltas and Lake Athabasca, Research and monitoring programs are now investigating hydrocarbon sources, fate, and time trends in these aquatic ecosystems. Natural hydrocarbon sources (oil sands) are numerous along the Athabasca River and its tributaries. Petrogenic hydrocarbons also are abundant in downstream lakes. Lower molecular weight compounds such as naphthalene and fluorene tend to increase in concentration ffom upstream sources to downstream depositional areas, There is little or no evidence of temporal trends of increasing PAH concentrations in sediment cores collected in Lake Athabasca and the Athabasca delta lakes, suggesting no or minimal impact from the oil sands operations, Some PAHs exceed interim sediment quality guidelines and some bioassay studies have shown evidence of toxicity, particularly in the Athabasca delta. -
MRBB4 Reportcol 2.7.6
Mackenzie River Basin State of the Aquatic Ecosystem Report 2003 8. Recent & Anticipated Developments Traditionally, state of the environment reports look back in time to assess the condition of the Industrial Developments environment and whether it has changed. However, there is also value in looking forward to anticipate what some of the major The Oil and Gas Industry environmental challenges will be in the coming The oil and gas industry will continue to expand years and to assess whether public and private in most jurisdictions in the Mackenzie River Basin. sector programs will be adequate to deal with Exploration, seismic activity, the development of those challenges. In this section of the report, new wells and pipeline expansions will continue in the Mackenzie River Basin Board examines the southern part of the basin. Exploration and some of the major industrial developments, seismic activity have increased in the Northwest environmental issues and initiatives that could Territories but have not yet reached the levels of affect the Mackenzie River Basin over the course the early 1970s. Land disturbance and the removal of the next few years. Specifically, it considers of vegetation are usually associated with these industrial developments that may occur in the activities. basin and public and private sector The proposed Mackenzie Gas Project (MGP) environmental initiatives. may stimulate further petroleum exploration and lead to development of gas reserves in the Mackenzie Delta and other parts of the western NWT. A major component of the MGP is a proposed pipeline that would move gas to southern markets 195 through the Mackenzie River Valley. -
PROVINCIAL GOVERNMENT AID 539 Mining and Access Roads
PROVINCIAL GOVERNMENT AID 539 Mining and Access Roads.—In 1951 the Department of Mines undertook a program of road construction in the mineralized areas of the province, to open them for prospecting and development and to facilitate the actual operation of mining enterprises. When the importance of this program in its relation to the whole development of northern Ontario became apparent, the Government decided that its scope should be widened and, with that end in view, an interdepartmental committee was set up early in 1955 to decide on matters of policy and to determine the locations and priorities of the proposed roads. The Minister of Mines sits on this committee with the Ministers of Lands and Forests, of Treasury, of Highways and of Reform Institutions. The Department of Highways supervises the construction of all access roads. Certain roads may be subsidized while others may be financed solely by Department of Mines funds. The sum of $1,500,000 a year has been made available for such projects. Manitoba.—The Mines Branch of the Manitoba Department of Mines and Natural Resources offers five main services of assistance to the mining industry: maintenance, by the Mining Recorder's offices at Winnipeg and The Pas, of all records essential to the granting and retention of titles to every mineral location in Manitoba; compilation, by the geological staff of the Branch, of historical and current information pertinent to mineral occurrences of interest and expansion of this information by a continuing program of geological mapping; enforcement of mine safety regulations and, by collaboration with industry, introduction of new practices such as those concerned with mine ventilation and the training of mine rescue crews which contribute to the health and welfare of mine workers; and maintenance of a chemical and assay laboratory to assist the prospector and the professional man in the classification of rocks and minerals and the evaluation of mineral occurrences.