CHARMM: the Biomolecular Simulation Program

Total Page:16

File Type:pdf, Size:1020Kb

CHARMM: the Biomolecular Simulation Program CHARMM: The Biomolecular Simulation Program B. R. BROOKS,1* C. L. BROOKS III,2,3* A. D. MACKERELL, Jr.,4* L. NILSSON,5* R. J. PETRELLA,6,7* B. ROUX,8* Y. WON,9* G. ARCHONTIS, C. BARTELS, S. BORESCH, A. CAFLISCH, L. CAVES, Q. CUI, A. R. DINNER, M. FEIG, S. FISCHER, J. GAO, M. HODOSCEK, W. IM, K. KUCZERA, T. LAZARIDIS, J. MA, V. OVCHINNIKOV, E. PACI, R. W. PASTOR, C. B. POST, J. Z. PU, M. SCHAEFER, B. TIDOR, R. M. VENABLE, H. L. WOODCOCK, X. WU, W. YANG, D. M. YORK, M. KARPLUS6,10* 1Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 2Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 3Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109 4Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201 5Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57, Huddinge, Sweden 6Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 7Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115 8Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Science, Chicago, Illinois 60637 9Department of Chemistry, Hanyang University, Seoul 133-792, Korea 10Laboratoire de Chimie Biophysique, ISIS, Universite´ de Strasbourg, 67000 Strasbourg, France Received 12 September 2008; Revised 24 February 2009; Accepted 3 March 2009 DOI 10.1002/jcc.21287 Published online 14 May 2009 in Wiley InterScience (www.interscience.wiley.com). Abstract: CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecu- lar simulation program. It has been developed over the last three decades with a primary focus on molecules of bio- logical interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estima- tors, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numer- ous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983. q 2009 Wiley Periodicals, Inc. J Comput Chem 30: 1545–1614, 2009 Key words: biomolecular simulation; CHARMM program; molecular mechanics; molecular dynamics; molecular modeling; biophysical computation; energy function I. Introduction Additional Supporting Information may be found in the online version of this article. Understanding how biological macromolecular systems (proteins, Correspondence to: B. R. Brooks; e-mail: [email protected] or nucleic acids, lipid membranes, carbohydrates, and their com- C. L. Brooks III; e-mail: [email protected] or A. D. MacKerell, Jr.; plexes) function is a major objective of current research by com- e-mail: [email protected] or L. Nilsson; e-mail: Lennart. putational chemists and biophysicists. The hypothesis underlying [email protected] or R. J. Petrella; e-mail: [email protected] or computational models of biological macromolecules is that the B. Roux; e-mail: [email protected] or Y. Won; e-mail: won@hanyang. behavior of such systems can be described in terms of the basic ac.kr or M. Karplus; e-mail: [email protected] physical principles governing the interactions and motions of Contract/grant sponsors: NSF, NIH, DOE, Accelrys, CNRS, NHLBI q 2009 Wiley Periodicals, Inc. 1546 Brooks et al. • Vol. 30, No. 10 • Journal of Computational Chemistry their elementary atomic constituents. The models are, thus, ics), was not included in that publication because an article was rooted in the fundamental laws of physics and chemistry, includ- not prepared in time for the issue. CHARMM was first described ing electrostatics, quantum mechanics and statistical mechanics. in JCC in 1983,22 although its earlier implementations had The challenge now is in the development and application of already been used to study biomolecules for a number of methods, based on such well-established principles, to shed light years.23 on the structure, function, and properties of often complex bio- CHARMM is a general and flexible molecular simulation and molecular systems. With the advent of computers, the scope of modeling program that uses classical (empirical and semiempiri- molecular dynamics (MD; see footnote for naming conventions)y cal) and quantum mechanical (QM) (semiempirical or ab initio) and other simulation techniques has evolved from the study of energy functions for molecular systems of many different simple hard-sphere models of liquids in the 1950s,1 to that of classes, sizes, and levels of heterogeneity and complexity. The models of more complex atomic and molecular liquids in the original version of the program, although considerably smaller 1960s,2,3 and to the study of proteins in the 1970s.4 Biological and more limited than CHARMM is at present, made it possible macromolecular systems of increasing size and complexity, to build the system of interest, optimize the configuration using including nucleic acids, viruses, membrane proteins, and macro- energy minimization techniques, perform a normal mode or MD molecular assemblies, are now being investigated using these simulation, and analyze the simulation results to determine struc- computational methods. tural, equilibrium, and dynamic properties. This version of The power and usefulness of atomic models based on realis- CHARMM22,24 was able to treat isolated molecules, molecules tic microscopic interactions for investigating the properties of a in solution, and molecules in crystalline solids. The information wide variety of biomolecules, as well as other chemical systems, for computations on proteins, nucleic acids, prosthetic groups has been amply demonstrated. The methodology and applica- (e.g., heme groups), and substrates was available as part of the tions have been described in numerous books5–10 and program. A large set of analysis facilities was provided, which reviews.11–13 Studies of such systems have now reached a point included static structure and energy comparisons, time series, where computational models often have an important role in the correlation functions and statistical properties of molecular design and interpretation of experiments. Of particular interest is dynamic trajectories, and interfaces to computer graphics pro- the possibility of employing molecular simulations to obtain in- grams. Over the years, CHARMM has been ported to many dif- formation that is difficult to determine experimentally.14,15 A ferent machines and platforms, in both serial and parallel imple- dictionary definition of ‘‘simulation’’ is, in fact, ‘‘the examina- mentations of the code; and it has been made to run efficiently tion of a problem, often not subject to direct experimentation,’’ on many types of computer systems, from single processor PCs, and it is this broad meaning that is intended here. Typical stud- Mac and Linux workstations, to machines based on vectorial or ies range from those concerned with the structures, energies, and multicore processors, to distributed-memory clusters of Linux vibrational frequencies of small molecules, through those dealing machines, and large, shared-memory supercomputer installations. with Monte Carlo and MD simulations of pure liquids and solu- Equally important, the structure of the program has provided a tions, to analyses of the conformational energies and fluctuations robust framework for incorporating new ideas and methodolo- of large molecules in solution or in crystal environments. gies—many of which did not even exist when CHARMM was As the field of biomolecular computation continues to evolve, first designed and coded in the late 1970s. Some examples are it is essential to retain maximum flexibility and to have available implicit solvent representations, free energy perturbation meth- a wide range of computational methods for the implementation ods, structure refinement based on X-ray or NMR data, transi- of novel ideas in research and its applications. The need to have tion path sampling, locally enhanced sampling with multiple an integrated approach for the development and application of copies, discretized Feynman path integral simulations, quantum such computational biophysical methods has led to the introduc- mechanical/molecular mechanical (QM/MM) simulations, and tion of a number of general-purpose programs, some of which the treatment of induced polarization. The ability of the basic are widely distributed in academic and commercial environ- framework of CHARMM to accommodate new methods without ments. Several16–21 were described in a special 2005 issue of large-scale restructuring of the code is one of the major Journal of Computational Chemistry (JCC). One
Recommended publications
  • MODELLER 10.1 Manual
    MODELLER A Program for Protein Structure Modeling Release 10.1, r12156 Andrej Saliˇ with help from Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Guangqiang Dong, Marc A. Martı-Renom, Narayanan Eswar, Frank Alber, Maya Topf, Baldomero Oliva, Andr´as Fiser, Roberto S´anchez, Bozidar Yerkovich, Azat Badretdinov, Francisco Melo, John P. Overington, and Eric Feyfant email: modeller-care AT salilab.org URL https://salilab.org/modeller/ 2021/03/12 ii Contents Copyright notice xxi Acknowledgments xxv 1 Introduction 1 1.1 What is Modeller?............................................. 1 1.2 Modeller bibliography....................................... .... 2 1.3 Obtainingandinstallingtheprogram. .................... 3 1.4 Bugreports...................................... ............ 4 1.5 Method for comparative protein structure modeling by Modeller ................... 5 1.6 Using Modeller forcomparativemodeling. ... 8 1.6.1 Preparinginputfiles . ............. 8 1.6.2 Running Modeller ......................................... 9 2 Automated comparative modeling with AutoModel 11 2.1 Simpleusage ..................................... ............ 11 2.2 Moreadvancedusage............................... .............. 12 2.2.1 Including water molecules, HETATM residues, and hydrogenatoms .............. 12 2.2.2 Changing the default optimization and refinement protocol ................... 14 2.2.3 Getting a very fast and approximate model . ................. 14 2.2.4 Building a model from multiple templates . .................. 15 2.2.5 Buildinganallhydrogenmodel
    [Show full text]
  • GROMACS: Fast, Flexible, and Free
    GROMACS: Fast, Flexible, and Free DAVID VAN DER SPOEL,1 ERIK LINDAHL,2 BERK HESS,3 GERRIT GROENHOF,4 ALAN E. MARK,4 HERMAN J. C. BERENDSEN4 1Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, S-75124 Uppsala, Sweden 2Stockholm Bioinformatics Center, SCFAB, Stockholm University, SE-10691 Stockholm, Sweden 3Max-Planck Institut fu¨r Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany 4Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands Received 12 February 2005; Accepted 18 March 2005 DOI 10.1002/jcc.20291 Published online in Wiley InterScience (www.interscience.wiley.com). Abstract: This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simula- tions. The package includes about 100 utility and analysis programs.
    [Show full text]
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • Cygwin User's Guide
    Cygwin User’s Guide Cygwin User’s Guide ii Copyright © Cygwin authors Permission is granted to make and distribute verbatim copies of this documentation provided the copyright notice and this per- mission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this documentation under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this documentation into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. Cygwin User’s Guide iii Contents 1 Cygwin Overview 1 1.1 What is it? . .1 1.2 Quick Start Guide for those more experienced with Windows . .1 1.3 Quick Start Guide for those more experienced with UNIX . .1 1.4 Are the Cygwin tools free software? . .2 1.5 A brief history of the Cygwin project . .2 1.6 Highlights of Cygwin Functionality . .3 1.6.1 Introduction . .3 1.6.2 Permissions and Security . .3 1.6.3 File Access . .3 1.6.4 Text Mode vs. Binary Mode . .4 1.6.5 ANSI C Library . .4 1.6.6 Process Creation . .5 1.6.6.1 Problems with process creation . .5 1.6.7 Signals . .6 1.6.8 Sockets . .6 1.6.9 Select . .7 1.7 What’s new and what changed in Cygwin . .7 1.7.1 What’s new and what changed in 3.2 .
    [Show full text]
  • The Focus - Issue 36
    Contents The Focus - Issue 36 A Publication for ANSYS Users Contents Feature Articles ● Linux & ANSYS: Lessons Learned ● Backup Tool ● Design Modeler FAQ On the Web ● APDL Customization course notes now available for purchase ● ANSYS and MathCAD ● ANSYS Acquires Century Dynamics Resources ● PADT Support: How can we help? ● Upcoming Training at PADT ● About The Focus ❍ The Focus Library ❍ Contributor Information ❍ Subscribe / Unsubscribe ❍ Legal Disclaimer http://www.padtinc.com/epubs/focus/common/contents.asp [3/28/2005 9:06:12 AM] Linux & ANSYS: Lessons Learned The Focus - Issue 36 A Publication for ANSYS Users Linux & ANSYS: Lessons Learned by Eric Miller, PADT Every couple of years, the computing picture for analysts gets turned upside down. For a long time now the industry has been moving from Unix workstations to Windows/Intel desktop machines. The wintel price/performance has been fantastic, the IT guys are happier, and all of that productivity software that you spend so much time with runs in the same spot. We have been happy with a stable and known environment. However, accepting the fact that unless you work for a big company that can buy some Unix servers, you just don’t have an easy way to get some extra horsepower other then getting a new box. Then along comes this Finnish guy that may or may not have been named after Lucy’s little brother. With not much of a life and a very large brain, he popped out the majority of a complete and free version of Unix that anyone can use, breaking the stranglehold of (expensive) proprietary Unix OS’s that ran on (expensive) proprietary hardware.
    [Show full text]
  • Parameterizing a Novel Residue
    University of Illinois at Urbana-Champaign Luthey-Schulten Group, Department of Chemistry Theoretical and Computational Biophysics Group Computational Biophysics Workshop Parameterizing a Novel Residue Rommie Amaro Brijeet Dhaliwal Zaida Luthey-Schulten Current Editors: Christopher Mayne Po-Chao Wen February 2012 CONTENTS 2 Contents 1 Biological Background and Chemical Mechanism 4 2 HisH System Setup 7 3 Testing out your new residue 9 4 The CHARMM Force Field 12 5 Developing Topology and Parameter Files 13 5.1 An Introduction to a CHARMM Topology File . 13 5.2 An Introduction to a CHARMM Parameter File . 16 5.3 Assigning Initial Values for Unknown Parameters . 18 5.4 A Closer Look at Dihedral Parameters . 18 6 Parameter generation using SPARTAN (Optional) 20 7 Minimization with new parameters 32 CONTENTS 3 Introduction Molecular dynamics (MD) simulations are a powerful scientific tool used to study a wide variety of systems in atomic detail. From a standard protein simulation, to the use of steered molecular dynamics (SMD), to modelling DNA-protein interactions, there are many useful applications. With the advent of massively parallel simulation programs such as NAMD2, the limits of computational anal- ysis are being pushed even further. Inevitably there comes a time in any molecular modelling scientist’s career when the need to simulate an entirely new molecule or ligand arises. The tech- nique of determining new force field parameters to describe these novel system components therefore becomes an invaluable skill. Determining the correct sys- tem parameters to use in conjunction with the chosen force field is only one important aspect of the process.
    [Show full text]
  • Development and Application of a Computational Platform for Complex Molecular Design Jaime Rodríguez-Guerra Pedregal
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Development and Application of a Computational Platform for Complex Molecular Design a dissertation submitted by Jaime Rodríguez-Guerra Pedregal & directed by Prof. Dr. Jean-Didier Maréchal in fulfillment of the requirements for the degree of Doctor of Biotechnology Tutor: Prof. Dr. Jordi Joan Cairó Badillo Department of Chemical, Biological and Environmental Engineering Universitat Autònoma de Barcelona July 2018 Development and Application of a Computational Platform for Complex Molecular Design a dissertation submitted by & recommended for acceptance by advisor Jaime Rodríguez-Guerra Pedregal Prof. Dr. Jean-Didier Maréchal Tutor: Prof. Dr. Jordi Joan Cairó Badillo Department of Chemical, Biological and Environmental Engineering Universitat Autònoma de Barcelona July 2018 ©2018 – Jaime Rodríguez-Guerra Pedregal Licensed as Creative Commons BY-NC-ND Attribution-NonCommercial-NoDerivs In the beginning, there was nothing. And God said «Let there be light». And there was light. There was still nothing, but you could see it a lot better. —WoodyAllen. Development and Application of a Computational Platform for Complex Molecular Design by Jaime Rodríguez-Guerra Pedregal Abstract In this dissertation, a series of novel computational modeling tools is reported.
    [Show full text]
  • SCIENCE HISTORY INSTITUTE ISABELLA KARLE and JEROME
    SCIENCE HISTORY INSTITUTE ISABELLA KARLE and JEROME KARLE Transcript of an Interview Conducted by James J. Bohning and David K. Van Keuren at Naval Research Laboratory Washington, District of Columbia on 26 February, 15 June and 9 September 1987 (With Subsequent Corrections and Additions) Upon Isabella Karle’s death in 2017, this oral history was designated Free Access. Please note: This oral history is protected by U.S. copyright law and shall not be reproduced or disseminated in any way without the express permission of the Science History Institute. Users citing this interview for purposes of publication are obliged under the terms of the Center for Oral History, Science History Institute, to credit the Science History Institute using the format below: Isabella Karle and Jerome Karle, interview by James J. Bohning and David K. Van Keuren at Naval Research Laboratory, Washington, District of Columbia, 26 February, 15 June and 9 September 1987 (Philadelphia: Science History Institute, Oral History Transcript # 0066). Formed by the merger of the Chemical Heritage Foundation and the Life Sciences Foundation, the Science History Institute collects and shares the stories of innovators and of discoveries that shape our lives. We preserve and interpret the history of chemistry, chemical engineering, and the life sciences. Headquartered in Philadelphia, with offices in California and Europe, the Institute houses an archive and a library for historians and researchers, a fellowship program for visiting scholars from around the globe, a community of researchers who examine historical and contemporary issues, and an acclaimed museum that is free and open to the public. For more information visit sciencehistory.org.
    [Show full text]
  • Cygwin User's Guide
    Cygwin User’s Guide i Cygwin User’s Guide Cygwin User’s Guide ii Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Red Hat, Inc. Permission is granted to make and distribute verbatim copies of this documentation provided the copyright notice and this per- mission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this documentation under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this documentation into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. Cygwin User’s Guide iii Contents 1 Cygwin Overview 1 1.1 What is it? . .1 1.2 Quick Start Guide for those more experienced with Windows . .1 1.3 Quick Start Guide for those more experienced with UNIX . .1 1.4 Are the Cygwin tools free software? . .2 1.5 A brief history of the Cygwin project . .2 1.6 Highlights of Cygwin Functionality . .3 1.6.1 Introduction . .3 1.6.2 Permissions and Security . .3 1.6.3 File Access . .3 1.6.4 Text Mode vs. Binary Mode . .4 1.6.5 ANSI C Library . .5 1.6.6 Process Creation . .5 1.6.6.1 Problems with process creation . .5 1.6.7 Signals . .6 1.6.8 Sockets . .6 1.6.9 Select .
    [Show full text]
  • Energy Functions and Their Relationship to Molecular Conformation
    Molecular dynamics simulation CS/CME/BioE/Biophys/BMI 279 Oct. 5, 2021 Ron Dror 1 Outline • Molecular dynamics (MD): The basic idea • Equations of motion • Key properties of MD simulations • Sample applications • Limitations of MD simulations • Software packages and force fields • Accelerating MD simulations • Monte Carlo simulation 2 Molecular dynamics: The basic idea 3 The idea • Mimic what atoms do in real life, assuming a given potential energy function – The energy function allows us to calculate the force experienced by any atom given the positions of the other atoms – Newton’s laws tell us how those forces will affect the motions of the atoms ) U Energy( Position Position 4 Basic algorithm • Divide time into discrete time steps, no more than a few femtoseconds (10–15 s) each • At each time step: – Compute the forces acting on each atom, using a molecular mechanics force field – Move the atoms a little bit: update position and velocity of each atom using Newton’s laws of motion 5 Molecular dynamics movie Equations of motion 7 Specifying atom positions • For a system with N x1 atoms, we can specify y1 the position of all z1 atoms by a single x2 vector x of length 3N y2 x = – This vector contains z2 the x, y, and z ⋮ coordinates of every xN atom yN zN Specifying forces ∂U • A single vector F specifies F1,x ∂x1 the force acting on every F ∂U atom in the system 1,y ∂y1 • For a system with N F ∂U atoms, F is a vector of 1,z ∂z1 length 3N ∂U F2,x – This vector lists the force ∂x2 ∂U on each atom in the x-, y-, F2,y and z- directions F
    [Show full text]
  • Molecular Docking : Current Advances and Challenges
    ARTÍCULO DE REVISIÓN © 2018 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza. This is an Open Access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). TIP Revista Especializada en Ciencias Químico-Biológicas, 21(Supl. 1): 65-87, 2018. DOI: 10.22201/fesz.23958723e.2018.0.143 MOLECULAR DOCKING: CURRENT ADVANCES AND CHALLENGES Fernando D. Prieto-Martínez,1a Marcelino Arciniega2 and José L. Medina-Franco1b 1Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Delegación Coyoacán, Ciudad de México 04510, México 2Instituto de Fisiología Celular, Departamento de Bioquímica y Biología Estructural, Universidad Nacional Autónoma de México E-mails: [email protected], [email protected],[email protected] ABSTRACT Automated molecular docking aims at predicting the possible interactions between two molecules. This method has proven useful in medicinal chemistry and drug discovery providing atomistic insights into molecular recognition. Over the last 20 years methods for molecular docking have been improved, yielding accurate results on pose prediction. Nonetheless, several aspects of molecular docking need revision due to changes in the paradigm of drug discovery. In the present article, we review the principles, techniques, and algorithms for docking with emphasis on protein-ligand docking for drug discovery. We also discuss current approaches to address major challenges of docking. Key Words: chemoinformatics, computer-aided drug design, drug discovery, structure-activity relationships. Acoplamiento Molecular: Avances Recientes y Retos RESUMEN El acoplamiento molecular automatizado tiene como objetivo proponer un modelo de unión entre dos moléculas. Este método ha sido útil en química farmacéutica y en el descubrimiento de nuevos fármacos por medio del entendimiento de las fuerzas de interacción involucradas en el reconocimiento molecular.
    [Show full text]
  • Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs
    marine drugs Review Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs Guilin Chen 1,2,3, Armel Jackson Seukep 1,2,3,4 and Mingquan Guo 1,2,3,* 1 Key Laboratory of Plant Germplasm Enhancement & Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; [email protected] (G.C.); [email protected] (A.J.S.) 2 Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China 3 Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China 4 Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, P.O. Box 63 Buea, Cameroon * Correspondence: [email protected]; Tel.: +86-27-8770-0850 Received: 16 September 2020; Accepted: 28 October 2020; Published: 30 October 2020 Abstract: Marine drugs have long been used and exhibit unique advantages in clinical practices. Among the marine drugs that have been approved by the Food and Drug Administration (FDA), the protein–ligand interactions, such as cytarabine–DNA polymerase, vidarabine–adenylyl cyclase, and eribulin–tubulin complexes, are the important mechanisms of action for their efficacy. However, the complex and multi-targeted components in marine medicinal resources, their bio-active chemical basis, and mechanisms of action have posed huge challenges in the discovery and development of marine drugs so far, which need to be systematically investigated in-depth. Molecular docking could effectively predict the binding mode and binding energy of the protein–ligand complexes and has become a major method of computer-aided drug design (CADD), hence this powerful tool has been widely used in many aspects of the research on marine drugs.
    [Show full text]