On the Dynamics of the General Bianchi IX Spacetime Near the Singularity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aleksei A. Abrikosov 1928–2017
Aleksei A. Abrikosov 1928–2017 A Biographical Memoir by M. R. Norman ©2018 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. ALEKSEI ALEKSEEVICH ABRIKOSOV June 25, 1928–March 29, 2017 Elected to the NAS, 2000 Shortly after the 2003 announcement that Aleksei Abrikosov had won the Nobel Prize in Physics, a number of colleagues took Alex to lunch at a nearby Italian restau- rant. During lunch, one of the Russian visitors exclaimed that Alex should get a second Nobel Prize, this time in Literature for his famous “AGD” book with Lev Gor’kov and Igor Dzyaloshinskii (Methods of Quantum Field Theory in Statistical Physics.) Somewhat taken aback, I looked closely at this individual and realized that he was deadly serious. Although I could imagine the reaction of the Nobel Literature committee to such a book (for a lay person, perhaps analogous to trying to read Finnegan’s Wake), I had to admit that my own copy of this book is quite dog-eared, having been put to good use over the By M. R. Norman years. In fact, you know you have made it in physics when your book gets a Dover edition. One of the most charming pictures I ever saw was a rare drawing in color that Alexei Tsvelik did (commissioned by Andrei Varlamov for Alex’s 50th birthday) that was proudly displayed in Alex’s home in Lemont, IL. It showed Alex with his fingers raised in a curled fashion as in the habit of medieval Popes. -
Lev Davidovich Landau Born: 12 January, 1908, Baku, Russian Empire Died: 1 April, 1968, Moscow, Soviet Union
Symmetry XIII (2019) 1 Dedicated to Lev Davidovich Landau Born: 12 January, 1908, Baku, Russian Empire Died: 1 April, 1968, Moscow, Soviet Union Symmetry XIII (2019) 2 Volume XIII, 2019 Editorial Symmetry This issue of symmetry is dedicated to the great physicists Lev Devidovich Landau. An annual Publication of CDP, TU Landau Soviet theoretical physicist, one of the founders of quantum theory of (Covid-19 Issue) condensed matter whose pioneering research in this field was recognized with the Patron 1962 Nobel Prize for Physics. In the year 1941, he successfully applied quantum Prof. Dr. Binil Aryal theory to the movement of superfluid liquid helium. Landau argued for the need of yet another radical conceptual revolution in physics in order to resolve the Advisory Board mounting difficulties in relativistic quantum theory. The collective work of Prof. Dr. Om Prakash Niraula Landau’s group embraced practically every branch of theoretical physics. In 1946 Prof. Dr. Raju Khanal he described the phenomenon of Landau damping of electromagnetic waves in Prof. Dr. Narayan Prasad Adhikari plasma. Together with Vitaly L. Ginzburg, in 1950 Landau obtained the correct Prof. Dr. Ram Prasad Regmi equations of the macroscopic theory of superconductivity. During the 1950s he and Prof. Dr. Ishwar Koirala collaborators discovered that even in renormalized quantum electrodynamics, a Dr. Hari Prasad Lamichhane new divergence difficulty appears (the Landau pole). The phenomenon of the Dr. Bal Ram Ghimire coupling constant becoming infinite or vanishing at some energy is an important Dr. Ajay Kumar Jha feature of modern quantum field theories. In this volume, there are 7 articles Dr. -
On the Dynamics of the General Bianchi IX Spacetime Near the Singularity
On the dynamics of the general Bianchi IX spacetime near the singularity Claus Kiefer,1, ∗ Nick Kwidzinski,1, y and W lodzimierz Piechocki2, z 1Institute for Theoretical Physics, University of Cologne, Z¨ulpicherStrasse 77, 50937 K¨oln,Germany 2Department of Fundamental Research, National Centre for Nuclear Research, Ho_za 69, 00-681 Warszawa, Poland (Dated: September 6, 2018) Abstract We show that the complex dynamics of the general Bianchi IX universe in the vicinity of the spacelike singularity can be approximated by a simplified system of equations. Our analysis is mainly based on numerical simulations. The properties of the solution space can be studied by using this simplified dynamics. Our results will be useful for the quantization of the general Bianchi IX model. PACS numbers: 04.20.-q, 05.45.-a arXiv:1807.06261v2 [gr-qc] 5 Sep 2018 ∗ [email protected] y [email protected] z [email protected] Typeset by REVTEX 1 I. INTRODUCTION The problem of spacetime singularities is a central one in classical and quantum theories of gravity. Given some general conditions, it was proven that general rel- ativity leads to singularities, among which special significance is attributed to big bang and black hole singularities [1]. The occurrence of a singularity in a physical theory usually signals the breakdown of that theory. In the case of general relativity, the expectation is that its singularities will disappear after quantization. Although a theory of quantum gravity is not yet available in finite form, various approaches exist within which the question of singularity avoidance can be addressed [2]. -
Icranet Scientific Report 2008
Early Cosmology and Fundamental General Relativity Contents 1 Topics 1215 2 Participants 1217 2.1 ICRANet participants . 1217 2.2 Past collaborations . 1217 2.3 Ongoing Collaborations . 1217 2.4 Graduate Students . 1217 3 Brief Description 1219 3.1 Highlights in Early Cosmology and Fundamental General Rel- ativity . 1219 3.1.1 Dissipative Cosmology . 1219 3.1.2 On the Jeans instability of gravitational perturbations . 1219 3.1.3 Extended Theories of Gravity . 1220 3.1.4 Coupling between Spin and Gravitational Waves . 1221 3.2 Appendix: The Generic Cosmological Solution . 1221 3.3 Appendix: Classical Mixmaster . 1221 3.4 Appendix: Interaction of neutrinos and primordial GW . 1223 3.5 Appendix: Perturbation Theory in Macroscopic Gravity . 1224 3.6 Appendix: Schouten’s Classification . 1224 3.7 Appendix: Inhomogeneous spaces and Entropy . 1225 3.8 Appendix: Polarization in GR . 1225 3.9 Appendix: Averaging Problem in Cosmology and Gravity . 1226 3.10 Appendix: Astrophysical Topics . 1227 4 Selected Publications Before 2005 1229 4.1 Early Cosmology . 1229 4.2 Fundamental General Relativity . 1233 5 Selected Publications (2005-2008) 1239 5.1 Early Cosmology . 1239 H.1Dissipative Cosmology 1245 H.2On the Jeans instability of gravitational perturbations 1251 H.3Extended Theories of Gravity 1257 1213 Contents H.4Coupling between Spin and Gravitational Waves 1261 H.5Activities 1263 H.5.1Review Work . 1263 H.5.1.1Classical and Quantum Features of the Mixmaster Sin- gularity . 1263 A.1Birth and Development of the Generic Cosmological Solution 1267 A.2Appendix: Classical Mixmaster 1271 A.2.1Chaos covariance of the Mixmaster model . 1271 A.2.2Chaos covariance of the generic cosmological solution . -
Zeldovich-100 Meeting Subatomic Particles, Nucleons, Atoms, Universe: Processes and Structure
Zeldovich-100 Meeting Subatomic particles, Nucleons, Atoms, Universe: Processes and Structure International conference in honor of Ya. B. Zeldovich 100th Anniversary March 10–14, 2014 Minsk, Belarus Yakov Borisovich Zeldovich Short biography of Ya.B. Zeldovich Born on March 8, 1914 in Minsk. Died on December 2, 1987 in Moscow. Father Zeldovich Boris Naumovich, lawyer, member of So- vier Advocate Collegia; Mother Zeldovich (Kiveliovich) Anna Petrovna, translator, member of Soviet Writers Union. Since middle of 1914 to August 1941 lived in Petrograd (later Leningrad), up to summer of 1943 in Kazan, since 1943 in Moscow. In 1924 entered secondary school right away to the 3rd form, finished the school in 1930. From autumn 1930 till May 1931 he studied at the courses and worked as a laboratory assistant at the Institute of Mechanical processing of minerals. In May 1931 became a laboratory assistant at the Institute of Chemical Physics of the Academy of Science of the USSR (ICP). He was connected with this Institute till his very last days. As he began to work in the ICF without higher education, he spend much time to self-education. From 1932 till 1934 studied as a extra-mural student at the Phys-Math department of the Leningrad State University, but didn’t recieved any degree there. Later listened lectures at the Phys-Mech department of the Poly- technical Institute. In 1934 joined ICF as a post-graduate student, in 1936 received PhD degree, in 1939 received degree of doctor of science (phys- math science). From 1938 he was a head of a laboratory at the ICF. -
Bohr's Relational Holism and the Classical-Quantum Interaction1
1 Bohr’s Relational Holism and the classical-quantum Interaction1 Mauro Dorato Department of Philosophy Communication and Media Studies University of Rome “Roma Tre”, Via Ostiense 234, 00144, Rome, Italy [email protected] 1 Introduction: a conflict in Bohr’s philosophy? Bohr’s philosophy of quantum mechanics has often been charged for what is allegedly one of its major shortcomings, namely the advocacy of an unambiguous classical/quantum distinction (let me refer to this view with the label the distinction thesis). As is well known, such a distinction is needed to defend Bohr’s view that any communicable measurement outcome must presuppose a classically describable instrument, with respect to which any reference to the quantum of action can be neglected (Bohr 1958, 4). Critics have then often insisted on the fact that the distinction in question is hopelessly vague (Bell 1987, 29) or at least strongly contextual (Ghirardi 2004), so that Bohr’s interpretation of quantum mechanics suffers from the same vagueness and adhoc-ness. The resulting problem is, allegedly, a renunciation to describe the dynamical interaction between system and apparatus in a physically precise, theoretically based and non-contextual way, and therefore to offer a much-needed solution to the measurement problem. In my paper I will present and critically discuss the main strategies that Bohr used and could have used to defend from this charge his interpretation of quantum mechanics. In particular, in the first part I will reassess the main arguments that Bohr used to advocate the 1 Thanks to Henry Folse and Jan Faye for their attentive reading of a previous draft of the paper. -
Early Cosmology and Fundamental General Relativity
EARLY COSMOLOGY AND FUNDAMENTAL GENERAL RELATIVITY 734 Contents 1 Topics 737 2 Participants 738 2.1 ICRANet participants . 738 2.2 Past collaborations . 738 2.3 Ongoing Collaborations . 738 2.4 GraduateStudents . .738 3 Brief description of Early Cosmology 739 3.1 Birth and Development of the Generic Cosmological Solution . 739 3.2 Classical Mixmaster . 739 3.2.1 Chaos covariance of the Mixmaster model . 739 3.2.2 Chaos covariance of the generic cosmological solution . 740 3.2.3 Inhomogeneous inflationary models . 740 3.2.4 The Role of a Vector Field . 740 3.3 Dissipative Cosmology . 741 3.4 Extended Theories of Gravity . 741 3.5 Interaction of neutrinos and primordial GW . 742 3.6 Coupling between Spin and Gravitational Waves . 743 4 Brief Description of Fundamental General Relativity 744 4.1 Perturbation Theory in Macroscopic Gravity . 744 4.2 Schouten’s Classification . 745 4.3 Inhomogeneous spaces and Entropy . 745 4.4 PolarizationinGR . .746 4.5 Averaging Problem in Cosmology and Gravity . 747 4.6 Astrophysical Topics . 747 5 Selected Publications 748 5.1 EarlyCosmology .........................748 5.2 Fundamental General Relativity . 754 735 6 APPENDICES 760 A Early Cosmology 761 A.1 Birth and Development of the Generic Cosmological Solution . 762 A.2 ClassicalMixmaster. .765 A.2.1 Chaos covariance of the Mixmaster model . 765 A.2.2 Chaos covariance of the generic cosmological solution . 766 A.2.3 Inhomogeneous inflationary models . 767 A.2.4 The Role of a Vector Field . 768 A.3 Dissipative Cosmology . 770 A.4 Extended Theories of Gravity . 774 A.5 Interaction of neutrinos and primordial GW . -
IRAP Phd Orizz
university of ferrara 600 YEARS OF LOOKING FORWARD. the International Relativistic Astrophysics Ph.D. Erasmus Mundus Joint Doctorate Program IRAP PhD Following the successful scientific space missions by the European Space Agency (ESA) The Faculty and the European Southern Observatory (ESO) in Chile, as well as the high energy Giovanni Amelino-Camelia SAPIENZA Università di Roma particle activities at CERN in Genève, we have initiated a Ph.D. programme dedicated Vladimir Belinski to create a pool of scientists in the field of relativistic astrophysics. After taking full SAPIENZA Università di Roma and ICRANet Carlo Luciano Bianco advantage of the observational and experimental facilities mentioned above, the SAPIENZA Università di Roma and ICRANet students of our programme are expected to lead the theoretical developments of one Donato Bini of the most active fields of research: relativistic astrophysics. CNR – Istit. per Applicaz. del Calcolo “M. Picone” Sandip Kumar Chakrabarti This program provides expertise in the most advanced topics of mathematical and Indian Centre For Space Physics, India theoretical physics, and in relativistic field theories, in the context of astronomy, Pascal Chardonnet (Erasmus Mundus Coordinator) astrophysics and cosmology. It provides the ability to model the observational data Université de Savoie received from the above laboratories. This activity is necessarily international as no Christian Cherubini single university can have a scientific expertise in such a broad range of fields. Università “Campus Biomedico” di Roma Pierre Coullet Université de Nice - Sophie Antipolis Thibault Damour We announce two calls: one with a deadline on 28 February 2011, sponsored by IHES, Bures-sur-Yvette Jaan Einasto Erasmus Mundus, and the other with a deadline on 30 September 2011. -
Spacetime Is Spinorial; New Dimensions Are Timelike
Spacetime is spinorial; new dimensions are timelike George A.J. Sparling Laboratory of Axiomatics University of Pittsburgh Pittsburgh, Pennsylvania, 15260, USA Since Pythagoras of Samos and Euclid of Alexandria1, we have known how to express the squared distance between entities as the sum of squares of displacements in perpendicular directions. Since Hermann Minkowski2 and Albert Einstein3, the squared in- terval between events has acquired a new term which represents the square of the time displacement and which comes in with a negative sign. Most higher dimensional theories, whose aim is to unify the physical interactions of nature, use space-like extra dimensions (more squares with positive signs) rather than time- like (more squares with negative signs)[4−8]. But there need be no contradiction if timelike extra dimensions are used: for exam- ple, in the seminal work of Lisa Randall and Raman Sundrum8, 2 consistency can be achieved by replacing their parameters rc and 2 Λ by −rc and −Λ, respectively. Here a new spinorial theory of physics is developed, built on Einstein’s general relativity3 and using the unifying triality concept of Elie Cartan9,10: the trial- ity links space-time with two twistor spaces[9−14]. Unification en- arXiv:gr-qc/0610068v1 13 Oct 2006 tails that space-time acquires two extra dimensions, each of which must be time-like. The experimental device known as the Large Hadron Collider, which is just now coming online, is expected to put the higher-dimensional theories and this prediction in partic- ular to the test15,16. The present theory has three key features: • A powerful new spinor transform is constructed in general relativity, the Ξ- transform, solving a forty-year old problem posed by Roger Penrose [11−14]: to find a non-local, essentially spinorial approach to fundamental physics. -
Hypersonic Flight
Contents | Zoom in | Zoom out For navigation instructions please click here Search Issue | Next Page PHYSICS TODAY November 2017 • volume 70, number 11 A publication of the American Institute of Physics HYPERSONIC FLIGHT The legacy of Ilya Lifshitz Atmospheric methane past and present Gender-based pay disparity Contents | Zoom in | Zoom out For navigation instructions please click here Search Issue | Next Page Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page VERIFY AND Surpass design challenges with ease using COMSOL Multiphysics®. Work with its OPTIMIZE powerful mathematical modeling tools and solver technology to deliver accurate and YOUR DESIGNS comprehensive simulation results. ® Develop custom applications using the with COMSOL Multiphysics Application Builder and deploy them within your organization and to customers worldwide The evolution of computational tools for with a local installation of COMSOL Server™. numerical simulation of physics-based systems has reached a major milestone. Benefit from the power of multiphysics today, request a live demo at comsol.com © Copyright 2017 COMSOL. COMSOL, the COMSOL logo, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, -
Ya B Zeldovich (1914–1987) Chemist, Nuclear Physicist, Cosmologist
GENERAL ARTICLE Ya B Zeldovich (1914–1987) Chemist, Nuclear Physicist, Cosmologist Varun Sahni Ya B Zeldovich was a pre-eminent Soviet physi- cist whose seminal contributions spanned many ¯elds ranging from physical chemistry to nuclear and particle physics, and ¯nally astrophysics and cosmology. This article attempts to convey some of the zest with which he did science and the im- portant role he played in fostering and mentoring Varun Sahni did his PhD a whole generation of talented Soviet scientists. in Moscow State Univer- sity under the supervision Introduction of Ya B Zeldovich and A A Starobinsky. Yakov Borisovich Zeldovich was exceptionally talented. He is a professor at His active scienti¯c career included major contributions IUCAA with interests in: in ¯elds as diverse as chemical physics (adsorption and the early Universe, gravity waves, dark matter and catalysis), the theory of shock waves, thermal explo- dark energy, quantum sions, the theory of °ame propogation, the theory of field theory in curved combustion and detonation, nuclear and particle physics, space-time and the and, during the latter part of his life: gravitation, astro- formation of large scale physics and cosmology [1]. structure in the Universe. Zeldovich made key contributions in all these areas, nur- turing a creative and thriving scienti¯c community in the process. His total scienti¯c output exceeds 500 re- 1 Bourbaki was the pseudonym search articles and 20 books. Indeed, after meeting him, collectively adopted by a group of twentieth century mathemati- the famous English physicist Stephen Hawking wrote cians who wrote several influen- \Now I know that you are a real person and not a group tial books under this pseudonym of scientists like the Bourbaki"1. -
Lifshitz Symmetries and Nonrelativistic Holography
Lifshitz symmetries and nonrelativistic holography About the cover: during the bachelor and master studies of the author of this dissertation, the main postal office of the Netherlands, a magnificent building built in the expressionistic architectural style of the Amsterdamse school and located in Utrecht, was overtaken by time and forced to close down. In its impressive main hall there are statues embodying the different continents, clarified by a wonderful expressionist font. Saddened by the thought that these elements could be hidden from the general public forever, a collective of people digitalized the font and as a result, it is now found on, among other places, the cover of this dissertation. The font was dubbed Neude, after the plaza at which this building is situated. Coinciding with the time of the author obtaining his doctoral title, it became clear that the building will reopen as a library. As such, the building will once again execute an honorable function and be accessible for the general public. ISBN: 978-94-028-0667-0 Lifshitz symmetries and nonrelativistic holography Lifshitz-symmetrie¨en en niet-relativistische holografie (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. G. J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op woensdag 12 juni 2017 des middags te 2.30 uur door Zhao-He Watse Sybesma geboren op 22 februari 1989 te Leiderdorp Promotor: prof. dr.