1. Padil Species Factsheet Scientific Name: Common Name Image

Total Page:16

File Type:pdf, Size:1020Kb

1. Padil Species Factsheet Scientific Name: Common Name Image 1. PaDIL Species Factsheet Scientific Name: Passalora arachidicola (Hori) U. Braun (Ascomycota: Dothideomycetes: Capnodiales: Mycosphaerellaceae) Common Name Passalora arachidicola Live link: http://www.padil.gov.au/maf-border/Pest/Main/143048 Image Library New Zealand Biosecurity Live link: http://www.padil.gov.au/maf-border/ Partners for New Zealand Biosecurity image library Landcare Research — Manaaki Whenua http://www.landcareresearch.co.nz/ MPI (Ministry for Primary Industries) http://www.biosecurity.govt.nz/ 2. Species Information 2.1. Details Specimen Contact: Eric McKenzie - [email protected] Author: McKenzie, E. Citation: McKenzie, E. (2013) Passalora arachidicola(Passalora arachidicola)Updated on 4/16/2014 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/maf-border/Pest/Main/143048 2.3. Facets Commodity Overview: Field Crops and Pastures Commodity Type: Fabaceous produce Distribution: Oceania Groups: Fungi & Mushrooms Host Family: Fabaceae Pest Status: 1 NZ - Non-regulated species Status: 0 NZ - Unknown 2.4. Other Names Cercospora arachidicola Hori Mycosphaerella arachidis Deighton 2.5. Diagnostic Notes **Disease** Early leaf spot. Lesions subcircular, 1–10 mm diam., reddish brown on upper surface, often surrounded by a chlorotic halo which is more distinct on upper surface; spot distinctly brown on lower surface. Petioles and stems may be infected, and plants may defoliate. **Morphology** _Conidiophores_ mostly epiphyllous, 15–50 µm long, 3–6 µm thick, fasciculate, unbranched, 0–2-septate, pale golden brown, straight or flexuous, with thickened spore scars. _Conidia_ 35–110 × 4–5 µm, 1–12- septate, sometimes slightly constricted at septa, pale olivaceous, smooth, straight or curved, obclavate, apex subacute, basal cell tapered to the base, thickened spore scar at base. **Notes** Macroscopically early leaf spot differs from late leaf spot (_Passalora personata_) principally by the presence of a halo, and the spots are not as dark as those caused by late leaf spot. 2.6. References - Crous, P.W. & Braun, U. (2003). _Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora_. CBS Biodiversity Series 1. 571 pp. - Ellis, M.B. (1976). _More Dematiaceous Hyphomycetes_. Commonwealth Mycological Institute, Kew, Surrey, England, pp. 267–268. - Hsieh, W.-H. & Goh, T.-K. (1990). _Cercospora and Similar Fungi from Taiwan_. Maw Chang Book Company, Taipei, pp. 162–163. - Mulder, J.L. & Holliday, P. (1974). _Mycosphaerella arachidis. CMI Descriptions of Pathogenic Fungi and Bacteria 411_, 1–2. 3. Diagnostic Images Passalora arachidicola symptoms on upper Lower surface of a peanut leaflet with brown surface of leaf lesions of early leaf spot (Passalora In Life: E. McKenzie Landcare Research arachidicola) and black lesions of late leaf spot (Passalora personata) In Life: E. McKenzie Landcare Research Results Generated: Friday, October 1, 2021 .
Recommended publications
  • Monocyclic Components for Evaluating Disease Resistance to Cercospora Arachidicola and Cercosporidium Personatum in Peanut
    Monocyclic Components for Evaluating Disease Resistance to Cercospora arachidicola and Cercosporidium personatum in Peanut by Limin Gong A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 6, 2016 Keywords: monocyclic components, disease resistance Copyright 2016 by Limin Gong Approved by Kira L. Bowen, Chair, Professor of Entomology and Plant Pathology Charles Y. Chen, Associate Professor of Crop, Soil and Environmental Sciences John F. Murphy, Professor of Entomology and Plant Pathology Jeffrey J. Coleman, Assisstant Professor of Entomology and Plant Pathology ABSTRACT Cultivated peanut (Arachis hypogaea L.) is an economically important crop that is produced in the United States and throughout the world. However, there are two major fungal pathogens of cultivated peanuts, and they each contribute to substantial yield losses of 50% or greater. The pathogens of these diseases are Cercospora arachidicola which causes early leaf spot (ELS), and Cercosporidium personatum which causes late leaf spot (LLS). While fungicide treatments are fairly effective for leaf spot management, disease resistance is still the best strategy. Therefore, it is important to evaluate and compare different genotypes for their disease resistance levels. The overall goal of this study was to determine resistance levels of different peanut genotypes to ELS and LLS. The peanut genotypes (Chit P7, C1001, Exp27-1516, Flavor Runner 458, PI 268868, and GA-12Y) used in this study include two genetically modified lines (Chit P7 and C1001) that over-expresses a chitinase gene. This overall goal was addressed with three specific objectives: 1) determine suitable conditions for pathogen culture and spore production in vitro; 2) determine suitable conditions for establishing infection in the greenhouse; 3) compare ELS and LLS disease reactions of young plants to those of older plants.
    [Show full text]
  • Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella Fijiensis
    RESEARCH ARTICLE Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis Roslyn D. Noar1, Margaret E. Daub2* 1 Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695-7616, United States of America, 2 Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, 27695-7612, United States of America a11111 * [email protected] Abstract Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideo- mycete fungus closely related to fungi that produce polyketides important for plant pathoge- OPEN ACCESS nicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene Citation: Noar RD, Daub ME (2016) Bioinformatics clusters and make bioinformatics predictions about the types of compounds produced by Prediction of Polyketide Synthase Gene Clusters these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing from Mycosphaerella fijiensis. PLoS ONE 11(7): e0158471. doi:10.1371/journal.pone.0158471 M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothi- deomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non- Editor: Minou Nowrousian, Ruhr-University Bochum, GERMANY reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyl- Received: April 6, 2016 transferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a Accepted: June 16, 2016 putative PKS cluster encoding melanin biosynthesis. None of the other clusters were Published: July 7, 2016 closely aligned with genes encoding known polyketides, however three of the PKS genes Copyright: © 2016 Noar, Daub.
    [Show full text]
  • Study of Fungi- SBT 302 Mycology
    MYCOLOGY DEPARTMENT OF PLANT SCIENCES DR. STANLEY KIMARU 2019 NOMENCLATURE-BINOMIAL SYSTEM OF NOMENCLATURE, RULES OF NOMENCLATURE, CLASSIFICATION OF FUNGI. KEY TO DIVISIONS AND SUB-DIVISIONS Taxonomy and Nomenclature Nomenclature is the naming of organisms. Both classification and nomenclature are governed by International code of Botanical Nomenclature, in order to devise stable methods of naming various taxa, As per binomial nomenclature, genus and species represent the name of an organism. Binomials when written should be underlined or italicized when printed. First letter of the genus should be capital and is commonly a noun, while species is often an adjective. An example for binomial can be cited as: Kingdom = Fungi Division = Eumycota Subdivision = Basidiomycotina Class = Teliomycetes Order = Uredinales Family = Pucciniaceae Genus = Puccinia Species = graminis Classification of Fungi An outline of classification (G.C. Ainsworth, F.K. Sparrow and A.S. Sussman, The Fungi Vol. IV-B, 1973) Key to divisions of Mycota Plasmodium or pseudoplasmodium present. MYXOMYCOTA Plasmodium or pseudoplasmodium absent, Assimilative phase filamentous. EUMYCOTA MYXOMYCOTA Class: Plasmodiophoromycetes 1. Plasmodiophorales Plasmodiophoraceae Plasmodiophora, Spongospora, Polymyxa Key to sub divisions of Eumycota Motile cells (zoospores) present, … MASTIGOMYCOTINA Sexual spores typically oospores Motile cells absent Perfect (sexual) state present as Zygospores… ZYGOMYCOTINA Ascospores… ASCOMYCOTINA Basidiospores… BASIDIOMYCOTINA Perfect (sexual) state
    [Show full text]
  • Early Detection of Airborne Inoculum of Nothopassalora Personata in Spore Trap Samples from Peanut Fields Using Quantitative PCR
    plants Article Early Detection of Airborne Inoculum of Nothopassalora personata in Spore Trap Samples from Peanut Fields Using Quantitative PCR Misbakhul Munir 1, Hehe Wang 1, Nicholas S. Dufault 2 and Daniel J. Anco 1,* 1 Department of Plant and Environment Science, Clemson University, Edisto Research and Education Center, Blackville, SC 29817, USA; [email protected] (M.M.); [email protected] (H.W.) 2 Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; nsdufault@ufl.edu * Correspondence: [email protected] Received: 15 September 2020; Accepted: 7 October 2020; Published: 9 October 2020 Abstract: A quantitative PCR (qPCR)-assay was developed to detect airborne inoculum of Nothopassalora personata, causal agent of late leaf spot (LLS) on peanut, collected with a modified impaction spore trap. The qPCR assay was able to consistently detect as few as 10 spores with purified DNA and 25 spores based on crude DNA extraction from rods. In 2019, two spore traps were placed in two peanut fields with a history of LLS. Sampling units were replaced every 2 to 4 days and tested with the developed qPCR assay, while plots were monitored for symptom development. The system detected inoculum 35 to 56 days before visual symptoms developed in the field, with detection related to environmental parameters affecting pathogen life-cycle and disease development. This study develops the framework of the qPCR spore trap system and represents the initial steps towards validation of the performance of the system for use as a decision support tool to complement integrated management of LLS. Keywords: specific primers; Cercosporidium personatum; spore collection; Arachis hypogaea 1.
    [Show full text]
  • Investigation of the Phytoalexin Response of Arachis Hypogaea L
    INVESTIGATION OF THE PHYTOALEXIN RESPONSE OF ARACHIS HYPOGAEA L. AND ITS POSSIBLE INVOLVEMENT IN RESISTANCE TO FOLIAR PATHOGENS by CHRISTINE EDWARDS UNIVERSITY COLLEGE LONDON Submitted to the University of London for PhD ProQuest Number: 10018700 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10018700 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Dedicated to my parents ACKNOWLEDGEMENTS I would like to thank Richard Strange for his patience and support. I would also like to thank Annette Slade, Dr. Graham Wallace and Dr. Ivor Lewis for mass spectrometry in various forms. I am grateful to Chris Brierly for tending the groundnuts at Nuffield Lodge gardens. Many thanks to my friends for their encouragement and tolerance. il TITLE: Investigation of the phytoalexin response of Arachis hypogaea L. and its possible Involvement In resistance to foliar pathogens. Natural infection of groundnut foliage with Cercospora arachidicola and Phoma arachidicola resulted in the accumulation of at least six antifungal compounds. The dominant antifungal compound was the pterocarpan medicarpin. Abiotic agents including ultra-violet irradiation, salts of heavy metals and detergents were used to elicit medicarpin and other antifungal compounds.
    [Show full text]
  • University of Florida Thesis Or Dissertation
    FIELD EFFICACY OF QUINONE OUTSIDE INHIBITOR AND DEMETHYLATION INHIBITOR FUNGICIDES ON PEANUT FOLIAR DISEASES IN FLORIDA By WAEL M. ELWAKIL A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2018 © 2018 Wael M. Elwakil To my Mom ACKNOWLEDGMENTS I thank my family for their emotional support and encouragement during this journey of pursuing my master’s. I owe a great debt of gratitude to my masters and doctorate advisor Dr. Nicholas S. Dufault of the Plant Pathology Department at the University of Florida for his continuous support, advice, and mentoring. Dr. Dufault is undeniably one of the most respectable and generous people that I have ever encountered in my life. I would like also to acknowledge Mrs. Kristin Beckham for her help during the various steps of this project. I also thank Dr. Rebecca Barocco for assisting with the field trials setup, maintenance, and disease ratings. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .......................................................................................................... 8 LIST OF ABBREVIATIONS ............................................................................................. 9 ABSTRACT ..................................................................................................................
    [Show full text]
  • Molecular Approaches to Detect and Control Cercospora Kikuchii In
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2012 Molecular Approaches to Detect and Control Cercospora kikuchii in Soybeans Ashok Kumar Chanda Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Plant Sciences Commons Recommended Citation Chanda, Ashok Kumar, "Molecular Approaches to Detect and Control Cercospora kikuchii in Soybeans" (2012). LSU Doctoral Dissertations. 3002. https://digitalcommons.lsu.edu/gradschool_dissertations/3002 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. MOLECULAR APPROACHES TO DETECT AND CONTROL CERCOSPORA KIKUCHII IN SOYBEANS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Plant Pathology and Crop Physiology by Ashok Kumar Chanda B.S., Acharya N. G. Ranga Agricultural University, 2001 M.S., Acharya N. G. Ranga Agricultural University, 2004 August 2012 DEDICATION This work is dedicated to my Dear Mother, PADMAVATHI Dear Father, MADHAVA RAO Sweet Wife, MALA Little Angel, HAMSINI ii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisors Dr. Zhi-Yuan Chen and Dr. Raymond Schneider, for giving me the opportunity to pursue this doctoral program, valuable guidance throughout my research as well as freedom to choose my work, kindness and constant encouragement, and teaching me how to become a molecular plant pathologist.
    [Show full text]
  • CHARACTERIZING the DIVERSITY of FUNGICIDE RESISTANCE in CERCOSPORA BETICOLA on SUGARBEET in MICHIGAN and ONTARIO by Qianwei Jian
    CHARACTERIZING THE DIVERSITY OF FUNGICIDE RESISTANCE IN CERCOSPORA BETICOLA ON SUGARBEET IN MICHIGAN AND ONTARIO By Qianwei Jiang A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Plant Pathology – Master of Science 2016 ABSTRACT CHARACTERIZING THE DIVERSITY OF FUNGICIDE RESISTANCE IN CERCOSPORA BETICOLA ON SUGARBEET IN MICHIGAN AND ONTARIO By Qianwei Jiang Cercospora leaf spot (CLS), caused by Cercospora beticola (Sacc.), is the most serious foliar disease of sugarbeet (Beta vulgaris L.) worldwide. Timely fungicide application is one of the most effective tools used to manage this disease. However, this strategy has been less effective because resistance has been reported in C. beticola to several classes of fungicides including benzimidazoles, organotin and demethylation inhibitors (DMIs). Thus knowledge of the interaction of C. beticola in Michigan with various fungicides is essential for making management decisions. A study has been conducted to survey the Great Lakes sugarbeet growing region for C. beticola isolates with sensitivity to various fungicides in use in the area. Results showed that most C. beticola isolates (>85%) tested were sensitive to DMI and organotin fungicides during the study (from 2012 to 2014) with EC50 values of less than 1 and 5 ppm respectively. Monitoring for the mutations in commercial fields indicated that resistant mutations were widespread in both Michigan and Ontario sugarbeet production areas. This data will direct the development of effective recommendations specific to production areas. Copyright by QIANWEI JIANG 2016 Dedicated to my beloved parents Yongzhong Jiang and Yunjian Qian; My husband Yiqun Yang; For their endless love, support, encouragement and sacrifices.
    [Show full text]
  • Multigene Phylogenies Reveal That Red Band Needle Blight of Pinus Is Caused by Two Distinct Species of Dothistroma, D
    STUDIES IN MYCOLOGY 50: 551–565. 2004. Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini Irene Barnes1*, Pedro W. Crous2, Brenda D. Wingfield1 and Michael J. Wingfield1 1Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa, 0002; 2 Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands *Correspondence: I. Barnes, [email protected] Abstract: The red band needle blight fungus, Dothistroma septosporum is a widely distributed pathogen of many pine species. Three morphological varieties of this pathogen have been described based on differences in conidial length. However, contro- versy exists as to whether spore size represents an adequate characteristic to distinguish between forms of D. septosporum. The aim of this investigation was to consider the phylogenetic relationships between D. septosporum isolates from different coun- tries. An additional objective was to determine whether comparisons of DNA sequence data support the morphological varie- ties recognized for this species. DNA from portions of the nuclear ribosomal internal transcribed spacer (ITS), !-tubulin and elongation factor 1- genes were sequenced and analysed for isolates from 13 different countries representing five continents. Results show that isolates of the pathogen encompass two divergent lineages representing distinct phylogenetic species. One phylogenetic species (Lineage I) is found worldwide, while the other (Lineage II), is restricted to the North-Central U.S.A. The names D. pini and D. septosporum are available for these species. The former name should apply to the phylogenetic species currently known only from the United States.
    [Show full text]
  • Investigation Into the Emerging Soil Borne Disease of Peanut – Neocosmospora Root Rot
    Investigation into the emerging soil borne disease of peanut – Neocosmospora root rot Kylie M. Wenham Bachelor of Applied Science (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Agriculture and Food Science i Abstract Neocosmospora root rot is an emerging soilborne disease of peanut (Arachis hypogaea L.) crops in Australia caused by Neocosmospora vasinfecta var. africana. The fungal pathogen was first identified in southern Queensland in 2005 following extensive damage to an irrigated peanut crop, and has since been found in all peanut growing areas in Queensland and New South Wales. Typical symptoms of the disease include extensive chlorosis and wilting of the plant starting from the main stem, and a blackened and decayed root system with reddish-orange perithecia of N. vasinfecta present on necrotic tissue of the main tap root and lateral root system as well as the pods. While the disease has been widely observed in agricultural production areas of Australia and is considered one of the most destructive pathogens of peanut, the biology, ecology and aetiology of N. vasinfecta is largely unknown therefore the biotic and abiotic factors that may influence the infectivity of the pathogen and severity of disease epidemics have not been identified. The purpose of this thesis is to investigate the biology, ecology and aetiology of N. vasinfecta var. africana and understand how these factors may contribute to the pathogenicity of the fungus. Due to limited knowledge of the biology of N. vasinfecta var. africana, a morphological and molecular approach was taken to determine the taxonomic identification and the morphological characteristics of the pathogen.
    [Show full text]
  • Università Degli Studi Di Trieste Xxxi Ciclo Del
    UNIVERSITÀ DEGLI STUDI DI TRIESTE XXXI CICLO DEL DOTTORATO DI RICERCA IN AMBIENTE E VITA TITOLO DELLA TESI Phylogenetic relationships among extremotolerant rock- inhabiting fungi and their associations with algae Settore scientifico-disciplinare: BIO/01 DOTTORANDO Claudio Gennaro Ametrano COORDINATORE Prof. Giorgio Alberti SUPERVISORE DI TESI Dr.ssa Lucia Muggia, PhD ANNO ACCADEMICO 2017/2018 Summary Thesis abstract .............................................................................................................................................. 3 Riassunto della tesi ....................................................................................................................................... 4 General introduction ..................................................................................................................................... 5 Chapter 1 .................................................................................................................................................... 7 Extremotolerant black fungi from rocks and lichens .............................................................................. 7 Abstract ........................................................................................................................................................ 7 Introduction .................................................................................................................................................. 7 Phylogenetic relationships of black fungi within Dothideomycetes
    [Show full text]
  • Classification of Plant Diseases
    K. K. WAGH COLLEGE OF AGRICULTURE, NASHIK DEPARTMENT OF PLANT PATHOLOGY THEORY NOTES Course No.: - PATH -121 Course Title: - Fundamentals of Plant Pathology Credits: - 3 (2+1) Compiled By Prof. Patil K.P. Assistant Professor Department of Plant Pathology Teaching Schedule a) Theory Lecture Topic Weightage (%) 1 Importance of plant diseases, scope and objectives of Plant 3 Pathology..... 2 History of Plant Pathology with special reference to Indian work 3 3,4 Terms and concepts in Plant Pathology, Pathogenesis 6 5 classification of plant diseases 5 6,7, 8 Causes of Plant Disease Biotic (fungi, bacteria, fastidious 10 vesicular bacteria, Phytoplasmas, spiroplasmas, viruses, viroids, algae, protozoa, and nematodes ) and abiotic causes with examples of diseases caused by them 9 Study of phanerogamic plant parasites. 3 10, 11 Symptoms of plant diseases 6 12,13, Fungi: general characters, definition of fungus, somatic structures, 7 14 types of fungal thalli, fungal tissues, modifications of thallus, 15 Reproduction in fungi (asexual and sexual). 4 16, 17 Nomenclature, Binomial system of nomenclature, rules of 6 nomenclature, 18, 19 Classification of fungi. Key to divisions, sub-divisions, orders and 6 classes. 20, 21, Bacteria and mollicutes: general morphological characters. Basic 8 22 methods of classification and reproduction in bacteria 23,24, Viruses: nature, architecture, multiplication and transmission 7 25 26, 27 Nematodes: General morphology and reproduction, classification 6 of nematode Symptoms and nature of damage caused by plant nematodes (Heterodera, Meloidogyne, Anguina etc.) 28, 29, Principles and methods of plant disease management. 6 30 31, 32, Nature, chemical combination, classification of fungicides and 7 33 antibiotics.
    [Show full text]