Emerging Mechanisms of Fluoroquinolone Resistance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Effect of Chloramphenicol on BB88 Murine Erythroleukemia Cells
Western Michigan University ScholarWorks at WMU Dissertations Graduate College 8-2007 The Effect of Chloramphenicol on BB88 Murine Erythroleukemia Cells Peter K. W. Harris Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Chemistry Commons Recommended Citation Harris, Peter K. W., "The Effect of Chloramphenicol on BB88 Murine Erythroleukemia Cells" (2007). Dissertations. 872. https://scholarworks.wmich.edu/dissertations/872 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. THE EFFECT OF CHLORAMPHENICOL ON BB88 MURINE ERYTHROLEUKEMIA CELLS by Peter K. W. Harris A Dissertation Submitted to the Faculty o f The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Biological Sciences Western Michigan University Kalamazoo, Michigan August 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE EFFECT OF CHLORAMPHENICOL ON BB88 MURINE ERYTHROLEUKEMIA CELLS Peter K. W. Harris, Ph.D. Western Michigan University, 2007 DNA microarrays can be used to measure genome-wide transcript levels. These measurements may be useful in understanding cellular changes induced by a chemical agent. In this study, Affymetrix microarray technology has been used to study the effects of chloramphenicol, an antibiotic that inhibits bacterial and mitochondrial protein synthesis, on the transcription profile in mammalian cells. Transcript levels in BB88 murine erythroleukemia cells treated with 50 micromolar (pM) chloramphenicol, a concentration shown to inhibit BB 88 proliferation, are measured. -
Fluoroquinolones in the Management of Acute Lower Respiratory Infection
Thorax 2000;55:83–85 83 Occasional review Thorax: first published as 10.1136/thorax.55.1.83 on 1 January 2000. Downloaded from The next generation: fluoroquinolones in the management of acute lower respiratory infection in adults Peter J Moss, Roger G Finch Lower respiratory tract infections (LRTI) are ing for up to 40% of isolates in Spain19 and 33% the leading infectious cause of death in most in the United States.20 In England and Wales developed countries; community acquired the prevalence is lower; in the first quarter of pneumonia (CAP) and acute exacerbations of 1999 6.5% of blood/cerebrospinal fluid isolates chronic bronchitis (AECB) are responsible for were reported to the Public Health Laboratory the bulk of the adult morbidity. Until recently Service as showing intermediate sensitivity or quinolone antibiotics were not recommended resistance (D Livermore, personal communi- for the routine treatment of these infections.1–3 cation). Pneumococcal resistance to penicillin Neither ciprofloxacin nor ofloxacin have ad- is not specifically linked to quinolone resist- equate activity against Streptococcus pneumoniae ance and, in general, penicillin resistant in vitro, and life threatening invasive pneumo- pneumococci are sensitive to the newer coccal disease has been reported in patients fluoroquinolones.11 21 treated for respiratory tract infections with Resistance to ciprofloxacin develops rela- these drugs.4–6 The development of new fluoro- tively easily in both S pneumoniae and H influ- quinolone agents with increased activity enzae, requiring only a single mutation in the against Gram positive organisms, combined parC gene.22 23 Other quinolones such as with concerns about increasing microbial sparfloxacin and clinafloxacin require two resistance to â-lactam agents, has prompted a mutations in the parC and gyrA genes.11 23 re-evaluation of the use of quinolones in LRTI. -
FLUOROQUINOLONES: from Structure to Activity and Toxicity
FLUOROQUINOLONES: from structure to activity and toxicity F. Van Bambeke, Pharm. D. & P. M. Tulkens, MD, PhD Unité de Pharmacologie Cellulaire et Moléculaire Université Catholique de Louvain, Brussels, Belgium SBIMC / BVIKM www.sbimc.org - www.bvikm.org www.md.ucl.ac.be/facm www.isap.org soon... Mechanism of action of fluoroquinolones: the basics... PORIN DNA Topo DNA gyrase isomerase Gram (-) Gram (+) 2 key enzymes in DNA replication: DNA gyrase topoisomerase IV bacterial DNA is supercoiled Ternary complex DNA - enzyme - fluoroquinolone DNA GYRASE catalytic subunits COVALENTLY CLOSED CIRCULAR DNA FLUOROQUINOLONES: DNA GYRASE ATP binding subunits 4 stacked molecules (Shen, in Quinolone Antimicrobial Agents, 1993) Resistance to fluoroquinolones: the basics decreased efflux pump permeability DNA mutation of DNA gyrase Topo isomerase the enzymes Gram (-) Gram (+) Fluoroquinolones are the first entirely man-made antibiotics: do we understand our molecule ? R5 O R COOH 6 R7 X8 N R1 Don’t panic, we will travel together…. Chemistry and Activity This is where all begins... The pharmacophore common to all fluoroquinolones BINDING TO DNA R5 O O R C 6 - BINDING TO O BINDING TO THE ENZYME THE ENZYME R7 X8 N R1 AUTO-ASSEMBLING DOMAIN (for stacking) From chloroquine to nalidixic acid... nalidixic acid N CH3 O O HN CH 3 C - O chloroquine CH N N Cl N 3 C2H5 1939 O O C O- 1962 Cl N 1958 C2H5 7-chloroquinoline (synthesis intermediate found to display antibacterial activity) Nalidixic acid * a • typical chemical features of O O fluoroquinolones (a, b, c) BUT a naphthridone C - O- b (N at position 8: ) H C N N 3 • limited usefulness as drug C H 2 5 • narrow antibacterial spectrum c (Enterobacteriaceae only) • short half-life (1.5h) • high protein binding (90%) * Belg. -
Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01 -
Grepafloxacin Susceptibility Against Penicillin Resistant
Invasive Streptococcus pneumoniae in Canada 2011: Study of Antimicrobial Resistance and Serotypes Alyssa Golden Department of Clinical Microbiology, Health Sciences Centre, and Faculty of Medicine, University of Manitoba Correspondence: Alyssa Golden c/o Dr. G.G. Zhanel Department of Clinical Microbiology Health Sciences Centre MS673 - 820 Sherbrook Street Winnipeg, Manitoba R3A 1R9 CANADA Phone: (204) 787-4902 Fax: (204) 787-4699 email: [email protected] Introduction Infections caused by Streptococcus pneumoniae are of critical concern, as respiratory and invasive isolates are commonly resistant to many drug classes, including penicillins. They are also frequently multi-drug resistant (simultaneous resistance to e3 structurally unrelated classes). A conjugate vaccine Prevnar® (PCV-7: 4, 6B, 9V, 14, 18C, 19F, 23F) has been used in Canada to great effect, reducing the number of invasive S. pneumoniae infections observed in children. However, S. pneumoniae serotypes that are not related to the vaccine are rising in Canada. For this reason, a new vaccine, PCV- 13 (PCV-7 + 1, 3, 5, 6A, 7F and 19A), was recently released in Canada to combat the rise of non-vaccine serotypes, especially 19A. This vaccination allows for broader coverage of S. pneumoniae serotypes. The purpose of my summer research project was to study invasive S. pneumoniae in Canada (2011) and assess their serotypes and antimicrobial resistance. Hypotheses PCV-13 will provide greater coverage of S. pneumoniae isolates than PCV-7. With the continued use of these conjugated vaccines, a greater proportion of non- vaccine serotypes will circulate in Canada. These serotypes will also be antimicrobial resistant. Methods Isolates tested were obtained from all geographic regions of Canada during the 2011 year. -
WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. -
The Role of the Immune Response in the Effectiveness of Antibiotic Treatment for Antibiotic Susceptible and Antibiotic Resistant Bacteria
The role of the immune response in the effectiveness of antibiotic treatment for antibiotic susceptible and antibiotic resistant bacteria. by Olachi Nnediogo Anuforom A thesis submitted to the University of Birmingham for the degree of Doctor of Philosophy. Institute of Microbiology and Infection, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham. May, 2015. University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract The increasing spread of antimicrobial resistant bacteria and the decline in the development of novel antibiotics have incited exploration of other avenues for antimicrobial therapy. One option is the use of antibiotics that enhance beneficial aspects of the host’s defences to infection. This study explores the influence of antibiotics on the innate immune response to bacteria. The aims were to investigate antibiotic effects on bacterial viability, innate immune cells (neutrophils and macrophages) in response to bacteria and interactions between bacteria and the host. Five exemplar antibiotics; ciprofloxacin, tetracycline, ceftriaxone, azithromycin and streptomycin at maximum serum concentration (Cmax) and minimum inhibitory concentrations (MIC) were tested. These five antibiotics were chosen as they are commonly used to treat infections and represent different classes of drug. -
Surveillance of Antimicrobial Consumption in Europe 2013-2014 SURVEILLANCE REPORT
SURVEILLANCE REPORT SURVEILLANCE REPORT Surveillance of antimicrobial consumption in Europe in Europe consumption of antimicrobial Surveillance Surveillance of antimicrobial consumption in Europe 2013-2014 2012 www.ecdc.europa.eu ECDC SURVEILLANCE REPORT Surveillance of antimicrobial consumption in Europe 2013–2014 This report of the European Centre for Disease Prevention and Control (ECDC) was coordinated by Klaus Weist. Contributing authors Klaus Weist, Arno Muller, Ana Hoxha, Vera Vlahović-Palčevski, Christelle Elias, Dominique Monnet and Ole Heuer. Data analysis: Klaus Weist, Arno Muller and Ana Hoxha. Acknowledgements The authors would like to thank the ESAC-Net Disease Network Coordination Committee members (Marcel Bruch, Philippe Cavalié, Herman Goossens, Jenny Hellman, Susan Hopkins, Stephanie Natsch, Anna Olczak-Pienkowska, Ajay Oza, Arjana Tambić Andrasevic, Peter Zarb) and observers (Jane Robertson, Arno Muller, Mike Sharland, Theo Verheij) for providing valuable comments and scientific advice during the production of the report. All ESAC-Net participants and National Coordinators are acknowledged for providing data and valuable comments on this report. The authors also acknowledge Gaetan Guyodo, Catalin Albu and Anna Renau-Rosell for managing the data and providing technical support to the participating countries. Suggested citation: European Centre for Disease Prevention and Control. Surveillance of antimicrobial consumption in Europe, 2013‒2014. Stockholm: ECDC; 2018. Stockholm, May 2018 ISBN 978-92-9498-187-5 ISSN 2315-0955 -
Duration of Antibiotic Treatment for Uncomplicated Urinary Tract Infection in Long-Term Care Residents
EVIDENCE BRIEF Duration of Antibiotic Treatment for Uncomplicated Urinary Tract Infection in Long-Term Care Residents October 2018 Key Messages Recent evidence suggests that short courses of antibiotics (7 days or less) are appropriate for older adults with uncomplicated lower urinary tract infections. There are several advantages to short course antibiotic therapy when compared to longer durations, including less side effects,1,2 less risk of antibiotic-resistant organisms3,4 and less risk of C. difficile infection.5 Duration of Antibiotic Treatment for Uncomplicated UTI in Long-Term Care Residents 1 Issue and Research Question Overuse of antimicrobial therapy in the long term care (LTC) setting is common and leads to patient harm.6 Seventy eight (78) % of Ontario LTC residents will receive at least one course of antimicrobial therapy over the course of a year. Of these prescriptions, one third are prescribed for urinary indications. At least one- third of these prescriptions are for asymptomatic bacteriuria, a condition that does not benefit from antimicrobial treatment in older adults.7 Sixty three (63) % of prescribed courses of antibiotic treatment in LTC are longer than 10 days. Duration of therapy varies drastically based on prescriber, but not patient characteristics.8 This overall long duration and prescriber variability persists when examining management of urinary tract infections. This data suggests that habit and experience play a large role in antibiotic prescribing patterns in long-term care, particularly for urinary tract infections. Due to the increased susceptibility to UTIs in older individuals, a function of reduced immune response and altered bladder function, elderly are often treated with longer antibiotic courses than younger patients.9 However, there is a lack of data that support the concept that longer courses are superior in this population. -
Alphabetical Listing of ATC Drugs & Codes
Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04 -
Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0 -
Standing Order for Tularemia Prophylaxis
OREGON HEALTH AUTHORITY PUBLIC HEALTH DIVISION ACUTE AND COMMUNICABLE DISEASE PREVENTION SECTION Tularemia Prophylaxis I. OREGON MODEL PROTOCOL 1. Follow the nursing assessment of individuals presenting for prophylactic treatment to a known or potentially harmful biological agent. 2. Provide patient information about tularemia and the preventive antibiotics prior to administration, answering any questions 3. Dispense antibiotic prophylaxis in accordance with prophylactic treatment guidelines (Table 1) and within the restrictions of the guidelines of the Strategic National Stockpile program. ________________________________________________________ Signature, Health Officer Date II. Persons for whom prophylaxis may be dispensed The World Health Organization recommends post-exposure prophylaxis in the following settings: 1. Exposure of laboratory personnel to Francisella tularensis in the absence of proper infection control measures; 2. Exposure to an aerosolized release of Francisella tularensis. Tularemia Page 2 of 15 Table 1 Recommendations for Treatment of Patients with Tularemia in a Mass Casualty Setting and for Post-exposure Prophylaxis a Preferred Choices Adults Doxycycline, 100 mg orally twice daily b Ciprofloxacin, 500 mg orally twice daily Preferred Choices Doxycycline; if ≥45 kg, give 100 mg orally twice daily; Children Doxycycline, if <45 kg, give 2.2 mg/kg orally twice daily; Ciprofloxacin, 10–15 mg/kg orally twice daily c Preferred Choices Pregnant women Ciprofloxacin, 500 mg orally twice daily b Doxycycline, 100 mg orally twice daily a One antibiotic, appropriate for patient age, should be chosen from among alternatives. The duration of all recommended therapies in Table 1 is 14 days. b Not a US Food and Drug Administration–approved use. c Ciprofloxacin dosage should not exceed 1g/d in children.