Prokaryote Data We
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proteus Vulgaris
48 Monte Carlo Crescent Kyalami Business Park Kyalami, Johannesburg, 1684, RSA Tel: +27 (0)11 463 3260 Fax: + 27 (0)86 557 2232 Email: [email protected] www.thistle.co.za Please read this section first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT- 16/009 Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. MICROBIOLOGY LEGEND CYCLE 41 ORGANISM 3 Proteus Vulgaris Proteus Vulgaris is a rod shaped Gram-Negative chemoheterotrophic bacterium. The size of the individual cells varies from 0.4 to 0.6 micrometers by 1.2 to 2.5 micrometers. P. vulgaris possesses peritrichous flagella, making it actively motile. It inhabits the soil, polluted water, raw meat, gastrointestinal tracts of animals and dust. In humans, Proteus species most frequently cause urinary tract infections, but can also produce severe abscesses and is widely associated with nosocomial infections. Isolation of Organism With basic microbiological technique, samples believed to contain P. vulgaris are first incubated on nutrient agar to form colonies. To test the Gram-Negative and oxidase-negative characteristics of Enterobacteriaceae, Gram stains and oxidase tests are performed. -
Taxonomy of the Azotobacteraceae Determined by Using Immunoelectrophoresis Y
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1983, p. 147-156 Vol. 33, No. 2 0020-7713/83/020147-10$02. WO Copyright 0 1983, International Union of Microbiological Societies a Taxonomy of the Azotobacteraceae Determined by Using Immunoelectrophoresis Y. T. TCHAN,'* Z. WYSZOMIRSKA-DREHER,' P. B. NEW,' AND J.-C. ZHOU' Department of Microbiology, University of Sydney, New South Wales, 2006, Australia, and Hua-ckung Agricultural College, Wuhan, People's Republic of China' The similarities of various strains of Azotobacter spp. and Azomonas spp. to reference strains of Azotobacter paspali, Azotobacter vinelandii, Azotobacter chroococcum, Azomonas agilis, Azomonas insignis, and Azomonas macrocyto- genes were determined by rocket line immunoelectrophoresis. The strains of Azotobacter paspali and Azotobacter vinelandii used were immunologically more homogeneous than the strains of Azotobacter chroococcum studied, possibly due to the more diverse geographical origins of the Azotobacter chroococcum strains. Low values were obtained for the mean immunological distances (1 - proportion of immunoprecipitation bands shared between strains) between Azotobacter paspali and Azotobacter vinelandii strains, suggesting that these two species are immunologically closely related. Immunological distances from the Azotobacter chroococcum reference strain were similar for Azotobacter paspali and for other undisputed members of the genus Azotobacter, which makes it reasonable to retain Azotobacter paspali in this genus. When the three Azotobacter antisera were used, all Azotobacter species had mean immunological distances of less than 0.5, whereas the Azomonas species were immunologically more distant , showing that the six species of Azotobacter form an immunologically related group which is distinct from the Azomonas species. Our results with the three Azomonas antisera show that each species of Azoinonas is immunologically distant from the other species, as well as from the Azotobacter species. -
Bourbon Gumbo” 10/13/2016
“Bourbon Gumbo” 10/13/2016 Microbial Analysis Report Table of Contents Executive Summary ----------------------------------------------------------------------------------------------------------------2 Background ---------------------------------------------------------------------------------------------------------------------2 Results ---------------------------------------------------------------------------------------------------------------------------2 Coliforms ------------------------------------------------------------------------------------------------------------------------4 Non-Coliforms that can trigger Coliform test ----------------------------------------------------------------------------4 Fecal Indicator Bacteria -------------------------------------------------------------------------------------------------------4 Potential Pathogens ------------------------------------------------------------------------------------------------------------4 Freshwater or Marine Bacteria (potential sign of surface water intrusion) -------------------------------------------4 Nitrogen Fixing Bacteria ------------------------------------------------------------------------------------------------------5 Carbon Fixing Bacteria --------------------------------------------------------------------------------------------------------5 Ammonia Oxidizing Bacteria ------------------------------------------------------------------------------------------------5 Nitrite Oxidizing Bacteria ----------------------------------------------------------------------------------------------------5 -
Electron Flow and Management in Living Systems: Advancing Understanding of Electron Transfer to Nitrogenase
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2018 Electron Flow and Management in Living Systems: Advancing Understanding of Electron Transfer to Nitrogenase Rhesa N. Ledbetter Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biochemistry Commons Recommended Citation Ledbetter, Rhesa N., "Electron Flow and Management in Living Systems: Advancing Understanding of Electron Transfer to Nitrogenase" (2018). All Graduate Theses and Dissertations. 7197. https://digitalcommons.usu.edu/etd/7197 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ELECTRON FLOW AND MANAGEMENT IN LIVING SYSTEMS: ADVANCING UNDERSTANDING OF ELECTRON TRANSFER TO NITROGENASE by Rhesa N. Ledbetter A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biochemistry Approved: ______________________ ______________________ Lance C. Seefeldt, Ph.D. Scott A. Ensign, Ph.D. Biochemistry Biochemistry Major Professor Committee Member ______________________ ______________________ Bruce Bugbee, Ph.D. Sean J. Johnson, Ph.D. Plant Physiology Biochemistry Committee Member Committee Member ______________________ ______________________ Nicholas E. Dickenson, Ph.D. Mark R. McLellan, Ph.D. Biochemistry Vice President for Research and Committee Member Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2018 ii Copyright © Rhesa N. Ledbetter 2018 All Rights Reserved iii ABSTRACT Electron Flow and Management in Living Systems: Advancing Understanding of Electron Transfer to Nitrogenase by Rhesa N. -
Uncommon Pathogens Causing Hospital-Acquired Infections in Postoperative Cardiac Surgical Patients
Published online: 2020-03-06 THIEME Review Article 89 Uncommon Pathogens Causing Hospital-Acquired Infections in Postoperative Cardiac Surgical Patients Manoj Kumar Sahu1 Netto George2 Neha Rastogi2 Chalatti Bipin1 Sarvesh Pal Singh1 1Department of Cardiothoracic and Vascular Surgery, CN Centre, All Address for correspondence Manoj K Sahu, MD, DNB, Department India Institute of Medical Sciences, Ansari Nagar, New Delhi, India of Cardiothoracic and Vascular Surgery, CTVS office, 7th floor, CN 2Infectious Disease, Department of Medicine, All India Institute of Centre, All India Institute of Medical Sciences, New Delhi-110029, Medical Sciences, Ansari Nagar, New Delhi, India India (e-mail: [email protected]). J Card Crit Care 2020;3:89–96 Abstract Bacterial infections are common causes of sepsis in the intensive care units. However, usually a finite number of Gram-negative bacteria cause sepsis (mostly according to the hospital flora). Some organisms such as Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus are relatively common. Others such as Stenotrophomonas maltophilia, Chryseobacterium indologenes, Shewanella putrefaciens, Ralstonia pickettii, Providencia, Morganella species, Nocardia, Elizabethkingia, Proteus, and Burkholderia are rare but of immense importance to public health, in view of the high mortality rates these are associated with. Being aware of these organisms, as the cause of hospital-acquired infections, helps in the prevention, Keywords treatment, and control of sepsis in the high-risk cardiac surgical patients including in ► uncommon pathogens heart transplants. Therefore, a basic understanding of when to suspect these organ- ► hospital-acquired isms is important for clinical diagnosis and initiating therapeutic options. This review infection discusses some rarely appearing pathogens in our intensive care unit with respect to ► cardiac surgical the spectrum of infections, and various antibiotics that were effective in managing intensive care unit these bacteria. -
Multiple Genome Sequences Reveal Adaptations of a Phototrophic Bacterium to Sediment Microenvironments
Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments Yasuhiro Odaa, Frank W. Larimerb, Patrick S. G. Chainc,d,e, Stephanie Malfattic,d, Maria V. Shinc,d, Lisa M. Vergezc,d, Loren Hauserb, Miriam L. Landb, Stephan Braatschf, J. Thomas Beattyf, Dale A. Pelletierb, Amy L. Schaefera, and Caroline S. Harwooda,1 aDepartment of Microbiology, University of Washington, Seattle, WA 98195; bGenome Analysis and Systems Modeling, Oak Ridge National Laboratory, Oak Ridge, TN 37831; cJoint Genome Institute, Walnut Creek, CA 94598; dLawrence Livermore National Laboratory, Livermore, CA 94550; eDepartment of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824; and fDepartment of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved October 14, 2008 (received for review September 13, 2008) The bacterial genus Rhodopseudomonas is comprised of photo- exist in soils and sediments, but on a microscale that is generally synthetic bacteria found widely distributed in aquatic sediments. too small for human observation. The genus Rhodopseudomonas Members of the genus catalyze hydrogen gas production, carbon consists of photosynthetic Alphaproteobacteria of extreme met- dioxide sequestration, and biomass turnover. The genome se- abolic versatility. Members of the genus are ubiquitous in quence of Rhodopseudomonas palustris CGA009 revealed a sur- temperate aquatic sediments (7–9), and isolates classified as prising richness of metabolic versatility that would seem to explain Rhodopseudomonas spp. can grow with or without light or its ability to live in a heterogeneous environment like sediment. oxygen, fix nitrogen, and have highly developed biodegradation However, there is considerable genotypic diversity among Rhodo- abilities. -
Peritonitis Due to Moraxella Osloensis: an Emerging Pathogen
Hindawi Case Reports in Nephrology Volume 2018, Article ID 4968371, 3 pages https://doi.org/10.1155/2018/4968371 Case Report Peritonitis due to Moraxella Osloensis: An Emerging Pathogen Sreedhar Adapa,1 Purva Gumaste,2 Venu Madhav Konala,3 Nikhil Agrawal,4 Amarinder Singh Garcha ,1 and Hemant Dhingra 5 1 Attending Nephrologist, Te Nephrology Group, Fresno, CA, USA 2Attending Physician, Kaweah Delta Medical Center, Visalia, CA, USA 3Medical Director and Medical Oncologist, Ashland Bellefonte Cancer Center, Ashland, KY, USA 4Fellow, Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA 5Program Director, Internal Medicine Residency, St Agnes Medical Center, Fresno, CA, USA Correspondence should be addressed to Hemant Dhingra; [email protected] Received 22 October 2018; Accepted 10 December 2018; Published 20 December 2018 Academic Editor: Rumeyza Kazancioglu Copyright © 2018 Sreedhar Adapa et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Peritonitis is a very serious complication encountered in patients undergoing peritoneal dialysis and healthcare providers involved in the management should be very vigilant. Gram-positive organisms are the frequent cause of peritonitis compared to gram- negative organisms. Tere has been recognition of peritonitis caused by uncommon organisms because of improved microbiological detection techniques. We report a case of peritonitis caused by Moraxella osloensis (M. osloensis), which is an unusual cause of infections in humans. A 68-year-old male, who has been on peritoneal dialysis for 2 years, presented with abdominal pain and cloudy efuent. -
Selection of a Bacterium for the Mass Production of Phasmarhabditis Hermaphrodita (Nematoda : Rhabditidae) As a Biocontrol Agent for Slugs
Fundam. appl. NemalOl., 1995,18 (5),419-425 Selection of a bacterium for the mass production of Phasmarhabditis hermaphrodita (Nematoda : Rhabditidae) as a biocontrol agent for slugs Michael J. WILSON *, David M. GLEN *, Susan K GEORGE * and Jeremy D. PEARCE ** * Department ofAgricullural Sciences, University ofBristol, !nstitute ofArable Crops Research, Long Ashton Research Station, Bristol BSIB 9AF, u.K. and ** MiCToBio Ltd., Church Street, Thriplow, Royston, Herts. SGB 7RE, u.K. Accepted for publication 16 September 1994. Summary - Dauer larvae of the slug-parasitic nematode, Phasmarhabditis hermaphrodir.a, were found to carry a mean of ca . 70 bacterial colony forming units with up to five different bacterial types present in individual nematodes. Nine bacterial isolates found associated with P. hermaphrodir.a, were injected into the body cavity of the slug, DerOGeras reliculalum. Only two isolates (Aeromonas hydrophila and Pseudomonasfluorescens, isolate 140), were found to be pathogenic. Phasmarhabditis hermaphrodila grown in monoxenic culture with five bacterial isolates (Moraxella osloensis, Providencia rellgeri, Serralia proteamaculans, P. fluorescens, isolate 140 and P. fluorescens, isolate 141) which supported strong growth were bioassayed against D. reliculalum. Nematodes grown with M. osloensis or P. fluorescens (isolate 141) were pathogenic, those grown with P. reugeri gave inconsistent results and those grown with the other two bacteria were non-pathogenic. These results demonstrate that differences in pathogenicity between -
Genome-Wide Identification of Azospirillum Brasilense Sp245
Koul et al. BMC Genomics (2020) 21:821 https://doi.org/10.1186/s12864-020-07212-7 RESEARCH ARTICLE Open Access Genome-wide identification of Azospirillum brasilense Sp245 small RNAs responsive to nitrogen starvation and likely involvement in plant-microbe interactions Vatsala Koul1,2†, Divya Srivastava2†, Pushplata Prasad Singh2* and Mandira Kochar2* Abstract Background: Small RNAs (sRNAs) are non-coding RNAs known to regulate various biological functions such as stress adaptation, metabolism, virulence as well as pathogenicity across a wide range of bacteria, mainly by controlling mRNA stabilization or regulating translation. Identification and functional characterization of sRNAs has been carried out in various plant growth-promoting bacteria and they have been shown to help the cells cope up with environmental stress. No study has been carried out to uncover these regulatory molecules in the diazotrophic alpha-proteobacterium Azospirillum brasilense Sp245 to date. Results: Expression-based sRNA identification (RNA-seq) revealed the first list of ~ 468 sRNA candidate genes in A. brasilense Sp245 that were differentially expressed in nitrogen starvation versus non-starved conditions. In parallel, in silico tools also identified 2 of the above as candidate sRNAs. Altogether, putative candidates were stringently curated from RNA-seq data based on known sRNA parameters (size, location, secondary structure, and abundance). In total, ~ 59 significantly expressed sRNAs were identified in this study of which 53 are potentially novel sRNAs as they have no Rfam and BSRD homologs. Sixteen sRNAs were randomly selected and validated for differential expression, which largely was found to be in congruence with the RNA-seq data. Conclusions: Differential expression of 468 A. -
Achromobacter Buckle Infection Diagnosed by a 16S Rdna Clone
Hotta et al. BMC Ophthalmology 2014, 14:142 http://www.biomedcentral.com/1471-2415/14/142 CASE REPORT Open Access Achromobacter buckle infection diagnosed by a 16S rDNA clone library analysis: a case report Fumika Hotta1†, Hiroshi Eguchi1*, Takeshi Naito1†, Yoshinori Mitamura1†, Kohei Kusujima2† and Tomomi Kuwahara3† Abstract Background: In clinical settings, bacterial infections are usually diagnosed by isolation of colonies after laboratory cultivation followed by species identification with biochemical tests. However, biochemical tests result in misidentification due to similar phenotypes of closely related species. In such cases, 16S rDNA sequence analysis is useful. Herein, we report the first case of an Achromobacter-associated buckle infection that was diagnosed by 16S rDNA sequence analysis. This report highlights the significance of Achromobacter spp. in device-related ophthalmic infections. Case presentation: A 56-year-old woman, who had received buckling surgery using a silicone solid tire for retinal detachment eighteen years prior to this study, presented purulent eye discharge and conjunctival hyperemia in her right eye. Buckle infection was suspected and the buckle material was removed. Isolates from cultures of preoperative discharge and from deposits on the operatively removed buckle material were initially identified as Alcaligenes and Corynebacterium species. However, sequence analysis of a 16S rDNA clone library using the DNA extracted from the deposits on the buckle material demonstrated that all of the 16S rDNA sequences most closely matched those of Achromobacter spp. We concluded that the initial misdiagnosis of this case as an Alcaligenes buckle infection was due to the unreliability of the biochemical test in discriminating Achromobacter and Alcaligenes species due to their close taxonomic positions and similar phenotypes. -
Which Organisms Are Used for Anti-Biofouling Studies
Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E. -
Common Commensals
Common Commensals Actinobacterium meyeri Aerococcus urinaeequi Arthrobacter nicotinovorans Actinomyces Aerococcus urinaehominis Arthrobacter nitroguajacolicus Actinomyces bernardiae Aerococcus viridans Arthrobacter oryzae Actinomyces bovis Alpha‐hemolytic Streptococcus, not S pneumoniae Arthrobacter oxydans Actinomyces cardiffensis Arachnia propionica Arthrobacter pascens Actinomyces dentalis Arcanobacterium Arthrobacter polychromogenes Actinomyces dentocariosus Arcanobacterium bernardiae Arthrobacter protophormiae Actinomyces DO8 Arcanobacterium haemolyticum Arthrobacter psychrolactophilus Actinomyces europaeus Arcanobacterium pluranimalium Arthrobacter psychrophenolicus Actinomyces funkei Arcanobacterium pyogenes Arthrobacter ramosus Actinomyces georgiae Arthrobacter Arthrobacter rhombi Actinomyces gerencseriae Arthrobacter agilis Arthrobacter roseus Actinomyces gerenseriae Arthrobacter albus Arthrobacter russicus Actinomyces graevenitzii Arthrobacter arilaitensis Arthrobacter scleromae Actinomyces hongkongensis Arthrobacter astrocyaneus Arthrobacter sulfonivorans Actinomyces israelii Arthrobacter atrocyaneus Arthrobacter sulfureus Actinomyces israelii serotype II Arthrobacter aurescens Arthrobacter uratoxydans Actinomyces meyeri Arthrobacter bergerei Arthrobacter ureafaciens Actinomyces naeslundii Arthrobacter chlorophenolicus Arthrobacter variabilis Actinomyces nasicola Arthrobacter citreus Arthrobacter viscosus Actinomyces neuii Arthrobacter creatinolyticus Arthrobacter woluwensis Actinomyces odontolyticus Arthrobacter crystallopoietes