Multiple Genome Sequences Reveal Adaptations of a Phototrophic Bacterium to Sediment Microenvironments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CUED Phd and Mphil Thesis Classes
High-throughput Experimental and Computational Studies of Bacterial Evolution Lars Barquist Queens' College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 23 August 2013 Arrakis teaches the attitude of the knife { chopping off what's incomplete and saying: \Now it's complete because it's ended here." Collected Sayings of Muad'dib Declaration High-throughput Experimental and Computational Studies of Bacterial Evolution The work presented in this dissertation was carried out at the Wellcome Trust Sanger Institute between October 2009 and August 2013. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 60,000 words as specified by the Faculty of Biology Degree Committee. This dissertation has been typeset in 12pt Computer Modern font using LATEX according to the specifications set by the Board of Graduate Studies and the Faculty of Biology Degree Committee. No part of this dissertation or anything substantially similar has been or is being submitted for any other qualification at any other university. Acknowledgements I have been tremendously fortunate to spend the past four years on the Wellcome Trust Genome Campus at the Sanger Institute and the European Bioinformatics Institute. I would like to thank foremost my main collaborators on the studies described in this thesis: Paul Gardner and Gemma Langridge. Their contributions and support have been invaluable. I would also like to thank my supervisor, Alex Bateman, for giving me the freedom to pursue a wide range of projects during my time in his group and for advice. -
55631756.Pdf
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Chemosphere 117 (2014) 295–302 Contents lists available at ScienceDirect Chemosphere journal homepage: www.elsevier.com/locate/chemosphere Influence of tetracycline on the microbial community composition and activity of nitrifying biofilms ⇑ Maria Matos a, , Maria A. Pereira a, Pier Parpot b, António G. Brito a,d, Regina Nogueira c a CEB – Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal b Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal c ISAH – Institute of Sanitary Engineering and Waste Management, University of Hannover, Welfengarten 1, D-30167 Hannover, Germany d Institute of Agronomy, Department of Biosystems Sciences and Engineering, University of Lisbon, Tapada da ajuda, 1349-017 Lisboa, Portugal highlights Tetracycline did not affect the removal of carbon and nitrogen. The antibiotic affected the bacterial composition of the biofilms. The tetracycline removal was poor (28%). Biodegradation was probably the main removal mechanism of the antibiotic. The occurrence of tet(S) was influenced by the presence of tetracycline. article info abstract Article history: The present work aims to evaluate the bacterial composition and activity (carbon and nitrogen removal) Received 14 February 2014 of nitrifying biofilms exposed to 50 lgLÀ1 of tetracycline. The tetracycline removal efficiency and the Received in revised form 27 June 2014 occurrence of tetracycline resistance (tet) genes were also studied. Two sequencing batch biofilm reactors Accepted 28 June 2014 (SBBRs) fed with synthetic wastewater were operated without (SBBR1) and with (SBBR2) the antibiotic. -
Diversification and Niche Adaptations of Nitrospina-Like Bacteria in The
The ISME Journal (2016) 10, 1383–1399 OPEN © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Diversification and niche adaptations of Nitrospina- like bacteria in the polyextreme interfaces of Red Sea brines David Kamanda Ngugi1, Jochen Blom2, Ramunas Stepanauskas3 and Ulrich Stingl1 1Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; 2Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany and 3Bigelow Laboratories for Ocean Sciences, East Boothbay, ME 04544-0380, USA Nitrite-oxidizing bacteria (NOB) of the genus Nitrospina have exclusively been found in marine environments. In the brine–seawater interface layer of Atlantis II Deep (Red Sea), Nitrospina-like bacteria constitute up to one-third of the bacterial 16S ribosomal RNA (rRNA) gene sequences. This is much higher compared with that reported in other marine habitats (~10% of all bacteria), and was unexpected because no NOB culture has been observed to grow above 4.0% salinity, presumably due to the low net energy gained from their metabolism that is insufficient for both growth and osmoregulation. Using phylogenetics, single-cell genomics and metagenomic fragment recruitment approaches, we document here that these Nitrospina-like bacteria, designated as Candidatus Nitromaritima RS, are not only highly diverged from the type species Nitrospina gracilis (pairwise genome identity of 69%) but are also ubiquitous in the deeper, highly saline interface layers (up to 11.2% salinity) with temperatures of up to 52 °C. Comparative pan-genome analyses revealed that less than half of the predicted proteome of Ca. Nitromaritima RS is shared with N. -
From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases. -
Genetic and Phenetic Analyses of Bradyrhizobium Strains Nodulating Peanut (Arachis Hypogaea L.) Roots DIMAN VAN ROSSUM,1 FRANK P
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 1995, p. 1599–1609 Vol. 61, No. 4 0099-2240/95/$04.0010 Copyright q 1995, American Society for Microbiology Genetic and Phenetic Analyses of Bradyrhizobium Strains Nodulating Peanut (Arachis hypogaea L.) Roots DIMAN VAN ROSSUM,1 FRANK P. SCHUURMANS,1 MONIQUE GILLIS,2 ARTHUR MUYOTCHA,3 1 1 1 HENK W. VAN VERSEVELD, ADRIAAN H. STOUTHAMER, AND FRED C. BOOGERD * Department of Microbiology, Institute for Molecular Biological Sciences, Vrije Universiteit, BioCentrum Amsterdam, 1081 HV Amsterdam, The Netherlands1; Laboratorium voor Microbiologie, Universiteit Gent, B-9000 Ghent, Belgium2; and Soil Productivity Research Laboratory, Marondera, Zimbabwe3 Received 15 August 1994/Accepted 10 January 1995 Seventeen Bradyrhizobium sp. strains and one Azorhizobium strain were compared on the basis of five genetic and phenetic features: (i) partial sequence analyses of the 16S rRNA gene (rDNA), (ii) randomly amplified DNA polymorphisms (RAPD) using three oligonucleotide primers, (iii) total cellular protein profiles, (iv) utilization of 21 aliphatic and 22 aromatic substrates, and (v) intrinsic resistances to seven antibiotics. Partial 16S rDNA analysis revealed the presence of only two rDNA homology (i.e., identity) groups among the 17 Bradyrhizobium strains. The partial 16S rDNA sequences of Bradyrhizobium sp. strains form a tight similarity (>95%) cluster with Rhodopseudomonas palustris, Nitrobacter species, Afipia species, and Blastobacter denitrifi- cans but were less similar to other members of the a-Proteobacteria, including other members of the Rhizobi- aceae family. Clustering the Bradyrhizobium sp. strains for their RAPD profiles, protein profiles, and substrate utilization data revealed more diversity than rDNA analysis. Intrinsic antibiotic resistance yielded strain- specific patterns that could not be clustered. -
International Code of Nomenclature of Prokaryotes
2019, volume 69, issue 1A, pages S1–S111 International Code of Nomenclature of Prokaryotes Prokaryotic Code (2008 Revision) Charles T. Parker1, Brian J. Tindall2 and George M. Garrity3 (Editors) 1NamesforLife, LLC (East Lansing, Michigan, United States) 2Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Braunschweig, Germany) 3Michigan State University (East Lansing, Michigan, United States) Corresponding Author: George M. Garrity ([email protected]) Table of Contents 1. Foreword to the First Edition S1–S1 2. Preface to the First Edition S2–S2 3. Preface to the 1975 Edition S3–S4 4. Preface to the 1990 Edition S5–S6 5. Preface to the Current Edition S7–S8 6. Memorial to Professor R. E. Buchanan S9–S12 7. Chapter 1. General Considerations S13–S14 8. Chapter 2. Principles S15–S16 9. Chapter 3. Rules of Nomenclature with Recommendations S17–S40 10. Chapter 4. Advisory Notes S41–S42 11. References S43–S44 12. Appendix 1. Codes of Nomenclature S45–S48 13. Appendix 2. Approved Lists of Bacterial Names S49–S49 14. Appendix 3. Published Sources for Names of Prokaryotic, Algal, Protozoal, Fungal, and Viral Taxa S50–S51 15. Appendix 4. Conserved and Rejected Names of Prokaryotic Taxa S52–S57 16. Appendix 5. Opinions Relating to the Nomenclature of Prokaryotes S58–S77 17. Appendix 6. Published Sources for Recommended Minimal Descriptions S78–S78 18. Appendix 7. Publication of a New Name S79–S80 19. Appendix 8. Preparation of a Request for an Opinion S81–S81 20. Appendix 9. Orthography S82–S89 21. Appendix 10. Infrasubspecific Subdivisions S90–S91 22. Appendix 11. The Provisional Status of Candidatus S92–S93 23. -
Activity and Ecophysiology of Nitrite-Oxidizing Bacteria in Natural
Activity and ecophysiology of nitrite-oxidizing bacteria in natural and engineered habitats Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Department Biologie der Universität Hamburg vorgelegt von Boris Nowka aus Bremen Hamburg 2014 Contents List of abbreviations 2 Chapter I Introduction 4 Chapter II Natural distribution of Nitrospira lineage I and II 16 and differentiation of two new isolates from activated sludge by morphological and physiological features Chapter III Comparative oxidation kinetics of nitrite-oxidizing 40 bacteria: nitrite availability as key factor for niche differentiation Chapter IV Summary 61 References 66 Appendix List of publications 81 Supplementary information 82 Acknowledgments 85 List of abbreviations °C degree Celsius % percentage µl microliter µm micrometer AOA ammonia-oxidizing archaea AOB ammonia-oxidizing bacteria BCA bicinchoninic acid BLAST Basic Local Alignment Search Tool bp base pairs CDS coding sequence cm centimeter DAPI 4',6-diamidino-2-phenylindole DGGE denaturing gradient gel electrophoresis DNA deoxyribonucleic acid DO dissolved oxygen EM electron microscopy EPS extracellular polymeric substances Fig. figure FISH fluorescence in situ hybridization fmol femtomole g gram h hour HPLC high-performance liquid chromatography l liter mM millimolar min minute nm nanometer NOB nitrite-oxidizing bacteria NXR nitrite oxidoreductase PCR polymerase chain reaction RAS recirculation aquaculture system 2 RFLP restriction fragment length polymorphism rpm revolutions per minute rRNA ribosomal ribonucleic acid s second SEM scanning electron microscope SMP soluble microbial products Tab. table TEM transmission electron microscope v volume WWTP wastewater treatment plant 3 Chapter I Introduction The nitrogen cycle The nitrogen cycle (Fig. 1.1) is a key process for life on earth. In the atmosphere and in natural waters nitrogen (N) exists mainly as dinitrogen gas (N2). -
Genomic and Kinetic Analysis of Novel Nitrospinae Enriched by Cell Sorting
The ISME Journal (2021) 15:732–745 https://doi.org/10.1038/s41396-020-00809-6 ARTICLE Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting 1 1,2 3,4 1 5 Anna J. Mueller ● Man-Young Jung ● Cameron R. Strachan ● Craig W. Herbold ● Rasmus H. Kirkegaard ● 1,5,6 1,6 Michael Wagner ● Holger Daims Received: 29 May 2020 / Revised: 23 September 2020 / Accepted: 5 October 2020 / Published online: 16 October 2020 © The Author(s) 2020. This article is published with open access Abstract Chemolithoautotrophic nitrite-oxidizing bacteria (NOB) are key players in global nitrogen and carbon cycling. Members of the phylum Nitrospinae are the most abundant, known NOB in the oceans. To date, only two closely affiliated Nitrospinae species have been isolated, which are only distantly related to the environmentally abundant uncultured Nitrospinae clades. Here, we applied live cell sorting, activity screening, and subcultivation on marine nitrite-oxidizing enrichments to obtain novel marine Nitrospinae. Two binary cultures were obtained, each containing one Nitrospinae strain and one alphaproteobacterial heterotroph. The Nitrospinae strains represent two new genera, and one strain is more closely related 1234567890();,: 1234567890();,: to environmentally abundant Nitrospinae than previously cultured NOB. With an apparent half-saturation constant of 8.7 ± 2.5 µM, this strain has the highest affinity for nitrite among characterized marine NOB, while the other strain (16.2 ± 1.6 µM) and Nitrospina gracilis (20.1 ± 2.1 µM) displayed slightly lower nitrite affinities. The new strains and N. gracilis share core metabolic pathways for nitrite oxidation and CO2 fixation but differ remarkably in their genomic repertoires of terminal oxidases, use of organic N sources, alternative energy metabolisms, osmotic stress and phage defense. -
Phylogenomics and Signature Proteins for the Alpha Proteobacteria and Its Main Groups Radhey S Gupta* and Amy Mok
BMC Microbiology BioMed Central Research article Open Access Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups Radhey S Gupta* and Amy Mok Address: Department of Biochemistry and Biomedical Science, McMaster University, Hamilton L8N3Z5, Canada Email: Radhey S Gupta* - [email protected]; Amy Mok - [email protected] * Corresponding author Published: 28 November 2007 Received: 20 July 2007 Accepted: 28 November 2007 BMC Microbiology 2007, 7:106 doi:10.1186/1471-2180-7-106 This article is available from: http://www.biomedcentral.com/1471-2180/7/106 © 2007 Gupta and Mok; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Alpha proteobacteria are one of the largest and most extensively studied groups within bacteria. However, for these bacteria as a whole and for all of its major subgroups (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales), very few or no distinctive molecular or biochemical characteristics are known. Results: We have carried out comprehensive phylogenomic analyses by means of Blastp and PSI- Blast searches on the open reading frames in the genomes of several α-proteobacteria (viz. Bradyrhizobium japonicum, Brucella suis, Caulobacter crescentus, Gluconobacter oxydans, Mesorhizobium loti, Nitrobacter winogradskyi, Novosphingobium aromaticivorans, Rhodobacter sphaeroides 2.4.1, Silicibacter sp. TM1040, Rhodospirillum rubrum and Wolbachia (Drosophila) endosymbiont). These studies have identified several proteins that are distinctive characteristics of all α-proteobacteria, as well as numerous proteins that are unique repertoires of all of its main orders (viz. -
Phylogenomics and Signature Proteins for the Alpha Proteobacteria and Its Main Groups Radhey S Gupta* and Amy Mok
BMC Microbiology BioMed Central Research article Open Access Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups Radhey S Gupta* and Amy Mok Address: Department of Biochemistry and Biomedical Science, McMaster University, Hamilton L8N3Z5, Canada Email: Radhey S Gupta* - [email protected]; Amy Mok - [email protected] * Corresponding author Published: 28 November 2007 Received: 20 July 2007 Accepted: 28 November 2007 BMC Microbiology 2007, 7:106 doi:10.1186/1471-2180-7-106 This article is available from: http://www.biomedcentral.com/1471-2180/7/106 © 2007 Gupta and Mok; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Alpha proteobacteria are one of the largest and most extensively studied groups within bacteria. However, for these bacteria as a whole and for all of its major subgroups (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales), very few or no distinctive molecular or biochemical characteristics are known. Results: We have carried out comprehensive phylogenomic analyses by means of Blastp and PSI- Blast searches on the open reading frames in the genomes of several α-proteobacteria (viz. Bradyrhizobium japonicum, Brucella suis, Caulobacter crescentus, Gluconobacter oxydans, Mesorhizobium loti, Nitrobacter winogradskyi, Novosphingobium aromaticivorans, Rhodobacter sphaeroides 2.4.1, Silicibacter sp. TM1040, Rhodospirillum rubrum and Wolbachia (Drosophila) endosymbiont). These studies have identified several proteins that are distinctive characteristics of all α-proteobacteria, as well as numerous proteins that are unique repertoires of all of its main orders (viz. -
Metagenomics and Metatranscriptomics of Lake Erie Ice
METAGENOMICS AND METATRANSCRIPTOMICS OF LAKE ERIE ICE Opeoluwa F. Iwaloye A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2021 Committee: Scott Rogers, Advisor Paul Morris Vipaporn Phuntumart © 2021 Opeoluwa Iwaloye All Rights Reserved iii ABSTRACT Scott Rogers, Lake Erie is one of the five Laurentian Great Lakes, that includes three basins. The central basin is the largest, with a mean volume of 305 km2, covering an area of 16,138 km2. The ice used for this research was collected from the central basin in the winter of 2010. DNA and RNA were extracted from this ice. cDNA was synthesized from the extracted RNA, followed by the ligation of EcoRI (NotI) adapters onto the ends of the nucleic acids. These were subjected to fractionation, and the resulting nucleic acids were amplified by PCR with EcoRI (NotI) primers. The resulting amplified nucleic acids were subject to PCR amplification using 454 primers, and then were sequenced. The sequences were analyzed using BLAST, and taxonomic affiliations were determined. Information about the taxonomic affiliations, important metabolic capabilities, habitat, and special functions were compiled. With a watershed of 78,000 km2, Lake Erie is used for agricultural, forest, recreational, transportation, and industrial purposes. Among the five great lakes, it has the largest input from human activities, has a long history of eutrophication, and serves as a water source for millions of people. These anthropogenic activities have significant influences on the biological community. Multiple studies have found diverse microbial communities in Lake Erie water and sediments, including large numbers of species from the Verrucomicrobia, Proteobacteria, Bacteroidetes, and Cyanobacteria, as well as a diverse set of eukaryotic taxa. -
An Investigation of Carbon and Nitrogen Metabolism Through a Genomic Analysis of the Genus Nitrobacter
AN ABSTRACT OF THE DISSERTATION OF Shawn R. Starkenburg for the degree of Doctor of Philosophy in Microbiology presented on December 18, 2007 Title: An Investigation of Carbon and Nitrogen Metabolism through a Genomic Analysis of the Genus Nitrobacter Abstract approved: ___________________________________________________________ Peter J. Bottomley The chemolithoautotrophic nitrite oxidizing bacteria (NOB) participate in the biogeochemical cycling of nitrogen by catalyzing and conserving energy from the - - oxidation of nitrite (NO2 ) to nitrate (NO3 ) via a nitrite oxidoreductase (NXR). The main objective of this work was to comparatively annotate and analyze the genome sequences of Nitrobacter winogradskyi NB255 and Nitrobacter hamburgensis X14 and use this information to extend our understanding of nitrogen and carbon metabolism in NOB. Through the analysis of the N. winogradskyi genome, genes encoding pathways for known modes of lithotrophic and heterotrophic growth were identified, including multiple enzymes involved in anapleurotic reactions centered on C2 to C4 metabolism. N. winogradskyi lacked genes encoding a complete glycolysis pathway and for the active transport of sugars. The N. hamburgensis genome harbored many genes not found in N. winogradskyi, including a complete glycolysis pathway, unique electron transport components, and putative pathways for the catabolism of aromatic, organic and one-carbon compounds. FAD-dependent oxidases were identified in the genome of N. hamburgensis which suggested that lactate could be metabolized, providing reductant and carbon to the cell. Indeed, D-lactate enhanced the growth rate and yield of - N. hamburgensis in the presence of NO2 and served as a sole energy and carbon source - in the absence of NO2 . Although lactate consumption occurred constitutively in lithoautotrophically grown cells, evidence was obtained for physiological adaptation to - lactate.