Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus Oceani ATCC 19707† Martin G

Total Page:16

File Type:pdf, Size:1020Kb

Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus Oceani ATCC 19707† Martin G APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept. 2006, p. 6299–6315 Vol. 72, No. 9 0099-2240/06/$08.00ϩ0 doi:10.1128/AEM.00463-06 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707† Martin G. Klotz,1* Daniel J. Arp,2 Patrick S. G. Chain,3,4 Amal F. El-Sheikh,1 Loren J. Hauser,5 Norman G. Hommes,2 Frank W. Larimer,5 Stephanie A. Malfatti,3,4 Jeanette M. Norton,6 Amisha T. Poret-Peterson,1 Lisa M. Vergez,3,4 and Bess B. Ward7 University of Louisville, Louisville, Kentucky 402921; Oregon State University, Corvallis, Oregon 973312; Lawrence Livermore National Laboratory, Livermore, California 945503; Joint Genome Institute, Walnut Creek, California 945984; Oak Ridge National Laboratory, Oak Ridge, Tennessee 378315; Utah State University, Logan, Utah 843226; and Princeton University, Princeton, New Jersey 085447 Received 26 February 2006/Accepted 16 June 2006 The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoau- totroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing (and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G؉C content of 50.4% and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxyl- amine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophos- phate appear to be integrated in this bacterium’s energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes ؉ ؉ I and IV as well as ATP synthase (one H -dependent F0F1 type, one Na -dependent V type). The ammonia-oxidizing bacterium Nitrosococcus oceani tracted from natural seawater (61, 74). In addition to the truly ATTC 19707 (Fig. 1) (Bacteria, Proteobacteria, Gammapro- marine environment, N. oceani was detected by immunofluo- teobacteria, Chromatiales, Chromatiaceae, Nitrosococcus, Ni- rescence and fluorescent in situ hybridization in the saline trosococcus oceani) was the first ammonia-oxidizing bacterium waters of Lake Bonney, a permanently ice-covered lake in isolated by enrichment culture from seawater (Nitrosocystis Antarctica (70). Nitrosococcus halophilus has been isolated oceanus) (53), and it resembles the original type strain, Nitroso- only from saline ponds (39) and has not been detected in other coccus winogradskyi 1892, which was lost. As a member of the environments by using molecular probes. order Chromatiales, the purple sulfur bacteria, N. oceani is a The general role of nitrifying bacteria in marine systems is to member of the evolutionarily oldest taxonomic group capable link the oxidizing and reducing processes of the nitrogen cycle of lithotrophic ammonia catabolism. To date, N. oceani and N. by converting ammonium to nitrate. This conversion is respon- halophilus are the only recognized species of gammaproteobac- sible for maintaining nitrate, the major component of the fixed terial ammonia-oxidizing bacteria (AOB). All other cultivated nitrogen pool in the oceans, which is present almost every- aerobic AOB are Betaproteobacteria, and their members have where below a few hundred meters at concentrations ap- been detected in soils, freshwater, and sediments as well as proaching 40 ␮M. The deep nitrate reservoir of the oceans, marine environments (41). In contrast, gammaproteobacterial believed to have come about by abiotic processes on the pri- AOB have only been found in marine or saline environments. mordial Earth (48), is a huge pool of nitrogen whose availabil- Nitrosococcus oceani has been detected in many marine envi- ity to primary producers in the surface layer is still controlled ronments using immunofluorescence (72, 78) and more re- largely by physical processes (27). The nitrification process cently on the basis of cloned gene sequences from DNA ex- produces oxidized forms of nitrogen that are lost via denitri- fication and anaerobic ammonia oxidation (anammox) (34, 65). By converting nitrogenous compounds released as waste * Corresponding author. Mailing address: Department of Biology, products of metabolism into NOx intermediates that can act University of Louisville, 139 Life Science Building, Louisville, KY both as oxidants and reductants for the fixed N removal pro- 40292. Phone: (502) 852-7779. Fax: (502) 852-0725. E-mail: aem @mgklotz.com. cesses (14, 73), nitrification closes the global nitrogen cycle. † Supplemental material for this article may be found at http://aem Nitrification occurs in both the water column and in sediments .asm.org/. of marine environments. In sediments, nitrification is often 6299 6300 KLOTZ ET AL. APPL.ENVIRON.MICROBIOL. FIG. 1. Transmission electron micrograph of Nitrosococcus oceani ATCC 19707. Cultures of N. oceani were grown until slowing readjustment of the pH with potassium carbonate indicated the beginning of transition of the culture into stationary growth phase. Cells were harvested by centrifugation and sent to the University of Wisconsin—Madison Electron Microscopy facility for further processing and electron microscopy. The scale bar at the lower right (500 nm) indicates the average cell size of 1.5 ␮m in diameter. tightly coupled with denitrification and can account for a sig- contained numerous genes that encode putative copper blue nificant fraction of the total oxygen consumption in sediments proteins (54), including one (CENSYa_1582) with significant (80). It has been discovered only recently that aerobic ammo- sequence similarity to the NcgA and NirK protein family, nia oxidation is also carried out by some Crenarchaeota (58 and which is implicated in nitrite reduction by AOB (6). Since references therein). Ko¨nneke et al. (38) reported the isolation AMO activity is also copper dependent, it appears that ammo- of a marine crenarchaeote, Candidatus Nitrosopumilus mari- nia oxidation in Archaea is entirely based on the function of tima, that was able to grow chemolithoautotrophically by aer- copper-containing proteins. Because copper is known to be obically consuming ammonia and producing nitrite. This phys- redox active only under oxic conditions and because the cyto- iological observation has been supported by the identification chrome-based core module of bacterial ammonia catabolism of DNA sequences similar to the genes encoding the three (encoded by the hao gene cluster) has evolved from bacterial subunits of ammonia monooxygenase (AMO) from AOB (38). inventory involved in (anaerobic) denitrification (7), it is highly On the other hand, the recently completed genome sequence likely that ammonia catabolism in the Archaea has evolved of the crenarchaeote Cenarchaeum symbiosum, a symbiont of fairly late by incorporating an AMO-like function into an am- marine sponges (28) predicted to be an ammonia-oxidizing monia-independent metabolism. Recent phylogenetic analyses archaeon (AOA), lacked all open reading frames (ORFs) with of known Amo subunit protein sequences (28, 58, and M. G. sequence similarity to genes known to be essential to ammonia Klotz, unpublished results) suggest, indeed, that the AOA oxidation in all AOB such as hydroxylamine oxidoreductase likely obtained their amo genes via lateral transfer from AOB. (HAO) and cytochromes c554 and cm552 (7). Furthermore, the It will thus be interesting to identify genetically and biochem- C. symbiosum genome lacked the genes for other cytochrome ically how the AOA resolved the tasks of aerobic ammonia proteins known to control nitrosating stress in AOB (31), ex- oxidation and detoxification of the resulting NOx compounds. cept for one (norQ) of the four required genes for functional The susceptibility of ammonia oxidizers to inhibition by sun- NO reductase (28). In contrast, the C. symbiosum genome light (due to the light sensitivity of ammonia monooxygenase VOL. 72, 2006 N. OCEANI GENOME SEQUENCE 6301 [AMO]) is probably responsible for the characteristic distribu- assess function. Manual functional assignments were assessed on an individual tion of nitrification in the water column; maximal rates occur in gene-by-gene basis as needed. Nucleotide sequence accession numbers. surface waters near the bottom of the euphotic zone (74). The sequence and annotation of the complete N. oceani strain ATCC 19707 genome is available at GenBank/EMBL/ Nitrification rates decrease with increasing depth as the rate of DDBJ accession numbers CP000127
Recommended publications
  • Cometabolic Biodegradation of Halogenated Aliphatic Hydrocarbons by Ammonia-Oxidizing Microorganisms Naturally Associated with Wetland Plant Roots
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2015 Cometabolic Biodegradation of Halogenated Aliphatic Hydrocarbons by Ammonia-oxidizing Microorganisms Naturally Associated with Wetland Plant Roots Ke Qin Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Environmental Sciences Commons Repository Citation Qin, Ke, "Cometabolic Biodegradation of Halogenated Aliphatic Hydrocarbons by Ammonia-oxidizing Microorganisms Naturally Associated with Wetland Plant Roots" (2015). Browse all Theses and Dissertations. 1430. https://corescholar.libraries.wright.edu/etd_all/1430 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. COMETABOLIC BIODEGRADATION OF HALOGENATED ALIPHATIC HYDROCARBONS BY AMMONIA-OXIDIZING MICROORGANISMS NATURALLY ASSOCIATED WITH WETLAND PLANT ROOTS A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By KE QIN MRes., University of York, 2008 2014 Wright State University i COPYRIGHT BY KE QIN 2014 ii WRIGHT STATE UNIVERSITY GRADUATE SCHOOL JANUARY 12, 2015 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Ke Qin ENTITLED Cometabolic Biodegradation of Halogenated Aliphatic Hydrocarbons by Ammonia-Oxidizing Microorganisms Naturally Associated with Wetland Plant Roots BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. ________________________________ Abinash Agrawal, Ph.D. Dissertation Director ________________________________ Donald Cipollini, Ph.D. Director, ES Ph.D. Program ________________________________ Committee on Robert E.W.
    [Show full text]
  • General Introduction
    Physiological Characteristics and Genomic Properties of Nitrosomonas mobilis Isolated from Nitrifying Granule of Wastewater Treatment Bioreactor December 2016 Soe Myat Thandar ソー ミャット サンダー Physiological Characteristics and Genomic Properties of Nitrosomonas mobilis Isolated from Nitrifying Granule of Wastewater Treatment Bioreactor December 2016 Waseda University Graduate School of Advanced Science and Engineering Department of Life Science and Medical Bioscience Research on Environmental Biotechnology Soe Myat Thandar ソー ミャット サンダー Contents Abbreviations ................................................................................................................... i Chapter 1-General introduction .................................................................................... 1 1.1. Nitrification and wastewater treatment system .......................................................... 3 1.2. Important of Nitrosomonas mobilis ........................................................................... 8 1.3. Objectives and outlines of this study ....................................................................... 12 1.4. Reference.................................................................................................................. 12 Chapter 2- Physiological characteristics of Nitrosomonas mobilis Ms1 ................... 17 2.1. Introduction .............................................................................................................. 19 2.2. Material and methods ..............................................................................................
    [Show full text]
  • Multiple Genome Sequences Reveal Adaptations of a Phototrophic Bacterium to Sediment Microenvironments
    Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments Yasuhiro Odaa, Frank W. Larimerb, Patrick S. G. Chainc,d,e, Stephanie Malfattic,d, Maria V. Shinc,d, Lisa M. Vergezc,d, Loren Hauserb, Miriam L. Landb, Stephan Braatschf, J. Thomas Beattyf, Dale A. Pelletierb, Amy L. Schaefera, and Caroline S. Harwooda,1 aDepartment of Microbiology, University of Washington, Seattle, WA 98195; bGenome Analysis and Systems Modeling, Oak Ridge National Laboratory, Oak Ridge, TN 37831; cJoint Genome Institute, Walnut Creek, CA 94598; dLawrence Livermore National Laboratory, Livermore, CA 94550; eDepartment of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824; and fDepartment of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved October 14, 2008 (received for review September 13, 2008) The bacterial genus Rhodopseudomonas is comprised of photo- exist in soils and sediments, but on a microscale that is generally synthetic bacteria found widely distributed in aquatic sediments. too small for human observation. The genus Rhodopseudomonas Members of the genus catalyze hydrogen gas production, carbon consists of photosynthetic Alphaproteobacteria of extreme met- dioxide sequestration, and biomass turnover. The genome se- abolic versatility. Members of the genus are ubiquitous in quence of Rhodopseudomonas palustris CGA009 revealed a sur- temperate aquatic sediments (7–9), and isolates classified as prising richness of metabolic versatility that would seem to explain Rhodopseudomonas spp. can grow with or without light or its ability to live in a heterogeneous environment like sediment. oxygen, fix nitrogen, and have highly developed biodegradation However, there is considerable genotypic diversity among Rhodo- abilities.
    [Show full text]
  • 55631756.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Chemosphere 117 (2014) 295–302 Contents lists available at ScienceDirect Chemosphere journal homepage: www.elsevier.com/locate/chemosphere Influence of tetracycline on the microbial community composition and activity of nitrifying biofilms ⇑ Maria Matos a, , Maria A. Pereira a, Pier Parpot b, António G. Brito a,d, Regina Nogueira c a CEB – Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal b Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal c ISAH – Institute of Sanitary Engineering and Waste Management, University of Hannover, Welfengarten 1, D-30167 Hannover, Germany d Institute of Agronomy, Department of Biosystems Sciences and Engineering, University of Lisbon, Tapada da ajuda, 1349-017 Lisboa, Portugal highlights Tetracycline did not affect the removal of carbon and nitrogen. The antibiotic affected the bacterial composition of the biofilms. The tetracycline removal was poor (28%). Biodegradation was probably the main removal mechanism of the antibiotic. The occurrence of tet(S) was influenced by the presence of tetracycline. article info abstract Article history: The present work aims to evaluate the bacterial composition and activity (carbon and nitrogen removal) Received 14 February 2014 of nitrifying biofilms exposed to 50 lgLÀ1 of tetracycline. The tetracycline removal efficiency and the Received in revised form 27 June 2014 occurrence of tetracycline resistance (tet) genes were also studied. Two sequencing batch biofilm reactors Accepted 28 June 2014 (SBBRs) fed with synthetic wastewater were operated without (SBBR1) and with (SBBR2) the antibiotic.
    [Show full text]
  • Indications for Enzymatic Denitriication to N2O at Low Ph in an Ammonia
    The ISME Journal (2019) 13:2633–2638 https://doi.org/10.1038/s41396-019-0460-6 BRIEF COMMUNICATION Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon 1,2 1 3 4 1 4 Man-Young Jung ● Joo-Han Gwak ● Lena Rohe ● Anette Giesemann ● Jong-Geol Kim ● Reinhard Well ● 5 2,6 2,6,7 1 Eugene L. Madsen ● Craig W. Herbold ● Michael Wagner ● Sung-Keun Rhee Received: 19 February 2019 / Revised: 5 May 2019 / Accepted: 27 May 2019 / Published online: 21 June 2019 © The Author(s) 2019. This article is published with open access Abstract Nitrous oxide (N2O) is a key climate change gas and nitrifying microbes living in terrestrial ecosystems contribute significantly to its formation. Many soils are acidic and global change will cause acidification of aquatic and terrestrial ecosystems, but the effect of decreasing pH on N2O formation by nitrifiers is poorly understood. Here, we used isotope-ratio mass spectrometry to investigate the effect of acidification on production of N2O by pure cultures of two ammonia-oxidizing archaea (AOA; Nitrosocosmicus oleophilus and Nitrosotenuis chungbukensis) and an ammonia-oxidizing bacterium (AOB; Nitrosomonas 15 europaea). For all three strains acidification led to increased emission of N2O. However, changes of N site preference (SP) 1234567890();,: 1234567890();,: values within the N2O molecule (as indicators of pathways for N2O formation), caused by decreasing pH, were highly different between the tested AOA and AOB. While acidification decreased the SP value in the AOB strain, SP values increased to a maximum value of 29‰ in N. oleophilus. In addition, 15N-nitrite tracer experiments showed that acidification boosted nitrite transformation into N2O in all strains, but the incorporation rate was different for each ammonia oxidizer.
    [Show full text]
  • Lydia H. Zeglin MBL Microbial Diversity Final Project Report 29 July 2008 How Does Salinity Affect Aerobic Ammonia Oxidizer Abundance and Diversity?
    Lydia H. Zeglin MBL Microbial Diversity Final Project Report 29 July 2008 How does salinity affect aerobic ammonia oxidizer abundance and diversity? Introduction Microorganisms are capable of making a living in diverse ways. For instance, chemolithoautotrophic microbes utilize inorganic electron donors and acceptors to supply cellular energy. Perhaps the most environmentally ubiquitous chemolithoautotrophic metabolic pathway is ammonia oxidation to nitrite, coupled with nitrite oxidation to nitrate, together + - - commonly referred to as nitrification (NH4 ⇒ NO2 ⇒ NO3 ). Ammonia oxidation to nitrite and nitrite oxidation to nitrate are separate steps performed by separate groups of organisms. + = + Ammonia oxidation (NH4 + 1.5 O2 ⇒ NO2 + H2O + 2H ) has been studied as an aerobic bacterial-mediated pathway for many years. Two monophyletic bacterial groups were thought to dominate this pathway: Nitrosomonas spp. (Betaproteobacteria: Nitrosomonadales: Nitrosomonadaceae) and Nitrosococcus spp. (Gammaproteobacteria: Chromatiales: Chromatiaceae). Recent insights have complicated this framework, as archaeal (Crenarchaeota, e.g. “Nitrosopumilis maritimus”, (Konneke et al., 2005)) microorganisms may perform a significant proportion of aerobic nitrification. A number of recent studies show a high abundance, diversity and activity of ammonia-oxidizing Crenarchaea in soils, marine waters and sediments (e.g. Francis et al. 2005, Leininger et al. 2006). There may also be a differential distribution of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing
    [Show full text]
  • Diversification and Niche Adaptations of Nitrospina-Like Bacteria in The
    The ISME Journal (2016) 10, 1383–1399 OPEN © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Diversification and niche adaptations of Nitrospina- like bacteria in the polyextreme interfaces of Red Sea brines David Kamanda Ngugi1, Jochen Blom2, Ramunas Stepanauskas3 and Ulrich Stingl1 1Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; 2Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany and 3Bigelow Laboratories for Ocean Sciences, East Boothbay, ME 04544-0380, USA Nitrite-oxidizing bacteria (NOB) of the genus Nitrospina have exclusively been found in marine environments. In the brine–seawater interface layer of Atlantis II Deep (Red Sea), Nitrospina-like bacteria constitute up to one-third of the bacterial 16S ribosomal RNA (rRNA) gene sequences. This is much higher compared with that reported in other marine habitats (~10% of all bacteria), and was unexpected because no NOB culture has been observed to grow above 4.0% salinity, presumably due to the low net energy gained from their metabolism that is insufficient for both growth and osmoregulation. Using phylogenetics, single-cell genomics and metagenomic fragment recruitment approaches, we document here that these Nitrospina-like bacteria, designated as Candidatus Nitromaritima RS, are not only highly diverged from the type species Nitrospina gracilis (pairwise genome identity of 69%) but are also ubiquitous in the deeper, highly saline interface layers (up to 11.2% salinity) with temperatures of up to 52 °C. Comparative pan-genome analyses revealed that less than half of the predicted proteome of Ca. Nitromaritima RS is shared with N.
    [Show full text]
  • Nitrification 31
    NITROGEN IN SOILS/Nitrification 31 See also: Eutrophication; Greenhouse Gas Emis- Powlson DS (1993) Understanding the soil nitrogen cycle. sions; Isotopes in Soil and Plant Investigations; Soil Use and Management 9: 86–94. Nitrogen in Soils: Cycle; Nitrification; Plant Uptake; Powlson DS (1999) Fate of nitrogen from manufactured Symbiotic Fixation; Pollution: Groundwater fertilizers in agriculture. In: Wilson WS, Ball AS, and Hinton RH (eds) Managing Risks of Nitrates to Humans Further Reading and the Environment, pp. 42–57. Cambridge: Royal Society of Chemistry. Addiscott TM, Whitmore AP, and Powlson DS (1991) Powlson DS (1997) Integrating agricultural nutrient man- Farming, Fertilizers and the Nitrate Problem. Wallingford: agement with environmental objectives – current state CAB International. and future prospects. Proceedings No. 402. York: The Benjamin N (2000) Nitrates in the human diet – good or Fertiliser Society. bad? Annales de Zootechnologie 49: 207–216. Powlson DS, Hart PBS, Poulton PR, Johnston AE, and Catt JA et al. (1998) Strategies to decrease nitrate leaching Jenkinson DS (1986) Recovery of 15N-labelled fertilizer in the Brimstone Farm experiment, Oxfordshire, UK, applied in autumn to winter wheat at four sites in eastern 1988–1993: the effects of winter cover crops and England. Journal of Agricultural Science, Cambridge unfertilized grass leys. Plant and Soil 203: 57–69. 107: 611–620. Cheney K (1990) Effect of nitrogen fertilizer rate on soil Recous S, Fresnau C, Faurie G, and Mary B (1988) The fate nitrate nitrogen content after harvesting winter wheat. of labelled 15N urea and ammonium nitrate applied to a Journal of Agricultural Science, Cambridge 114: winter wheat crop.
    [Show full text]
  • The Impact of Nitrite on Aerobic Growth of Paracoccus Denitrificans PD1222
    Katherine Hartop | January 2014 The Impact of Nitrite on Aerobic Growth of Paracoccus denitrificans PD1222 Submitted for approval by Katherine Rachel Hartop BSc (Hons) For the qualification of Doctor of Philosophy University of East Anglia School of Biological Sciences January 2014 This copy of the thesis has been supplied on conditions that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. i Katherine Hartop | January 2014 Acknowledgments Utmost thanks go to my supervisors Professor David Richardson, Dr Andy Gates and Dr Tom Clarke for their continual support and boundless knowledge. I am also delighted to have been supported by the funding of the University of East Anglia for the length of my doctorial research. Thank you to the Richardson laboratory as well as those I have encountered and had the honour of collaborating with from the School of Biological Sciences. Thank you to Georgios Giannopoulos for your contribution to my research and support during the writing of this thesis. Thanks to my friends for their patience, care and editorial input. Deepest thanks to Dr Rosa María Martínez-Espinosa and Dr Gary Rowley for examining me and my research. This work is dedicated to my parents, Keith and Gill, and my family. ii Katherine Hartop | January 2014 Abstract The effect of nitrite stress induced in Paracoccus denitrificans PD1222 was examined using additions of sodium nitrite to an aerobic bacterial culture.
    [Show full text]
  • The Crystal Structure of Nitrosomonas Europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights Into the Sucrose Metabolism in Prokaryotes
    Loyola University Chicago Loyola eCommons Chemistry: Faculty Publications and Other Works Faculty Publications 5-2015 The Crystal Structure of Nitrosomonas Europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights into the Sucrose Metabolism in Prokaryotes Rui Wu Matías D. Asención Diez Carlos M. Figueroa Loyola University Chicago Matías Machtey Alberto A. Iglesias Follow this and additional works at: https://ecommons.luc.edu/chemistry_facpubs See P nextart of page the forChemistr additionaly Commons authors Author Manuscript This is a pre-publication author manuscript of the final, published article. Recommended Citation Wu, Rui; Asención Diez, Matías D.; Figueroa, Carlos M.; Machtey, Matías; Iglesias, Alberto A.; Ballicora, Miguel; and Liu, Dali. The Crystal Structure of Nitrosomonas Europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights into the Sucrose Metabolism in Prokaryotes. Journal of Bacteriology, , : 1-54, 2015. Retrieved from Loyola eCommons, Chemistry: Faculty Publications and Other Works, http://dx.doi.org/10.1128/JB.00110-15 This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Chemistry: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © American Society for Microbiology, 2015. Authors Rui Wu, Matías D. Asención Diez, Carlos M. Figueroa, Matías Machtey, Alberto A. Iglesias, Miguel Ballicora, and Dali Liu This article is available at Loyola eCommons: https://ecommons.luc.edu/chemistry_facpubs/75 JB Accepted Manuscript Posted Online 26 May 2015 J.
    [Show full text]
  • Genetic and Phenetic Analyses of Bradyrhizobium Strains Nodulating Peanut (Arachis Hypogaea L.) Roots DIMAN VAN ROSSUM,1 FRANK P
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 1995, p. 1599–1609 Vol. 61, No. 4 0099-2240/95/$04.0010 Copyright q 1995, American Society for Microbiology Genetic and Phenetic Analyses of Bradyrhizobium Strains Nodulating Peanut (Arachis hypogaea L.) Roots DIMAN VAN ROSSUM,1 FRANK P. SCHUURMANS,1 MONIQUE GILLIS,2 ARTHUR MUYOTCHA,3 1 1 1 HENK W. VAN VERSEVELD, ADRIAAN H. STOUTHAMER, AND FRED C. BOOGERD * Department of Microbiology, Institute for Molecular Biological Sciences, Vrije Universiteit, BioCentrum Amsterdam, 1081 HV Amsterdam, The Netherlands1; Laboratorium voor Microbiologie, Universiteit Gent, B-9000 Ghent, Belgium2; and Soil Productivity Research Laboratory, Marondera, Zimbabwe3 Received 15 August 1994/Accepted 10 January 1995 Seventeen Bradyrhizobium sp. strains and one Azorhizobium strain were compared on the basis of five genetic and phenetic features: (i) partial sequence analyses of the 16S rRNA gene (rDNA), (ii) randomly amplified DNA polymorphisms (RAPD) using three oligonucleotide primers, (iii) total cellular protein profiles, (iv) utilization of 21 aliphatic and 22 aromatic substrates, and (v) intrinsic resistances to seven antibiotics. Partial 16S rDNA analysis revealed the presence of only two rDNA homology (i.e., identity) groups among the 17 Bradyrhizobium strains. The partial 16S rDNA sequences of Bradyrhizobium sp. strains form a tight similarity (>95%) cluster with Rhodopseudomonas palustris, Nitrobacter species, Afipia species, and Blastobacter denitrifi- cans but were less similar to other members of the a-Proteobacteria, including other members of the Rhizobi- aceae family. Clustering the Bradyrhizobium sp. strains for their RAPD profiles, protein profiles, and substrate utilization data revealed more diversity than rDNA analysis. Intrinsic antibiotic resistance yielded strain- specific patterns that could not be clustered.
    [Show full text]
  • International Code of Nomenclature of Prokaryotes
    2019, volume 69, issue 1A, pages S1–S111 International Code of Nomenclature of Prokaryotes Prokaryotic Code (2008 Revision) Charles T. Parker1, Brian J. Tindall2 and George M. Garrity3 (Editors) 1NamesforLife, LLC (East Lansing, Michigan, United States) 2Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Braunschweig, Germany) 3Michigan State University (East Lansing, Michigan, United States) Corresponding Author: George M. Garrity ([email protected]) Table of Contents 1. Foreword to the First Edition S1–S1 2. Preface to the First Edition S2–S2 3. Preface to the 1975 Edition S3–S4 4. Preface to the 1990 Edition S5–S6 5. Preface to the Current Edition S7–S8 6. Memorial to Professor R. E. Buchanan S9–S12 7. Chapter 1. General Considerations S13–S14 8. Chapter 2. Principles S15–S16 9. Chapter 3. Rules of Nomenclature with Recommendations S17–S40 10. Chapter 4. Advisory Notes S41–S42 11. References S43–S44 12. Appendix 1. Codes of Nomenclature S45–S48 13. Appendix 2. Approved Lists of Bacterial Names S49–S49 14. Appendix 3. Published Sources for Names of Prokaryotic, Algal, Protozoal, Fungal, and Viral Taxa S50–S51 15. Appendix 4. Conserved and Rejected Names of Prokaryotic Taxa S52–S57 16. Appendix 5. Opinions Relating to the Nomenclature of Prokaryotes S58–S77 17. Appendix 6. Published Sources for Recommended Minimal Descriptions S78–S78 18. Appendix 7. Publication of a New Name S79–S80 19. Appendix 8. Preparation of a Request for an Opinion S81–S81 20. Appendix 9. Orthography S82–S89 21. Appendix 10. Infrasubspecific Subdivisions S90–S91 22. Appendix 11. The Provisional Status of Candidatus S92–S93 23.
    [Show full text]