HOUSE of REPRESENTATIVES Applied Universally
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vegetation and Fire at the Last Glacial Maximum in Tropical South America
Past Climate Variability in South America and Surrounding Regions Developments in Paleoenvironmental Research VOLUME 14 Aims and Scope: Paleoenvironmental research continues to enjoy tremendous interest and progress in the scientific community. The overall aims and scope of the Developments in Paleoenvironmental Research book series is to capture this excitement and doc- ument these developments. Volumes related to any aspect of paleoenvironmental research, encompassing any time period, are within the scope of the series. For example, relevant topics include studies focused on terrestrial, peatland, lacustrine, riverine, estuarine, and marine systems, ice cores, cave deposits, palynology, iso- topes, geochemistry, sedimentology, paleontology, etc. Methodological and taxo- nomic volumes relevant to paleoenvironmental research are also encouraged. The series will include edited volumes on a particular subject, geographic region, or time period, conference and workshop proceedings, as well as monographs. Prospective authors and/or editors should consult the series editor for more details. The series editor also welcomes any comments or suggestions for future volumes. EDITOR AND BOARD OF ADVISORS Series Editor: John P. Smol, Queen’s University, Canada Advisory Board: Keith Alverson, Intergovernmental Oceanographic Commission (IOC), UNESCO, France H. John B. Birks, University of Bergen and Bjerknes Centre for Climate Research, Norway Raymond S. Bradley, University of Massachusetts, USA Glen M. MacDonald, University of California, USA For futher -
Varve-Related Publications in Alphabetical Order (Version 15 March 2015) Please Report Additional References, Updates, Errors Etc
Varve-Related Publications in Alphabetical Order (version 15 March 2015) Please report additional references, updates, errors etc. to Arndt Schimmelmann ([email protected]) Abril JM, Brunskill GJ (2014) Evidence that excess 210Pb flux varies with sediment accumulation rate and implications for dating recent sediments. Journal of Paleolimnology 52, 121-137. http://dx.doi.org/10.1007/s10933-014-9782-6; statistical analysis of radiometric dating of 10 annually laminated sediment cores from aquatic systems, constant rate of supply (CRS) model. Abu-Jaber NS, Al-Bataina BA, Jawad Ali A (1997) Radiochemistry of sediments from the southern Dead Sea, Jordan. Environmental Geology 32 (4), 281-284. http://dx.doi.org/10.1007/s002540050218; Dimona, Jordan, gamma spectroscopy, lead-210, no anthropogenic contamination, calculated sedimentation rate agrees with varve record. Addison JA, Finney BP, Jaeger JM, Stoner JS, Norris RN, Hangsterfer A (2012) Examining Gulf of Alaska marine paleoclimate at seasonal to decadal timescales. In: (Besonen MR, ed.) Second Workshop of the PAGES Varves Working Group, Program and Abstracts, 17-19 March 2011, Corpus Christi, Texas, USA, 15-21. http://www.pages.unibe.ch/download/docs/working_groups/vwg/2011_2nd_VWG_workshop_programs_and_abstracts.pdf; ca. 60 cm marine sediment core from Deep Inlet in southeast Alaska, CT scan, XRF scanning, suspected varves, 1972 earthquake and tsunami caused turbidite with scouring and erosion. Addison JA, Finney BP, Jaeger JM, Stoner JS, Norris RD, Hangsterfer A (2013) Integrating satellite observations and modern climate measurements with the recent sedimentary record: An example from Southeast Alaska. Journal of Geophysical Research: Oceans 118 (7), 3444-3461. http://dx.doi.org/10.1002/jgrc.20243; Gulf of Alaska, paleoproductivity, scanning XRF, Pacific Decadal Oscillation PDO, fjord, 137Cs, 210Pb, geochronometry, three-dimensional computed tomography, discontinuous event-based marine varve chronology spans AD ∼1940–1981, Br/Cl ratios reflect changes in marine organic matter accumulation. -
Paleoenvironmental Reconstructions in the Baltic Sea and Iberian Margin
Paleoenvironmental reconstructions in the Baltic Sea and Iberian Margin Assessment of GDGTs and long-chain alkenones in Holocene sedimentary records Lisa Alexandra Warden Photography: Cover photos: Dietmar Rüß Inside photos: Dietmar Rüß, René Heistermann and Claudia Zell Printed by: Ridderprint, Ridderkerk Paleoenvironmental reconstructions in the Baltic Sea and Iberian Margin Assessment of GDGTs and long-chain alkenones in Holocene sedimentary records Het gebruik van GDGTs en alkenonen in Holocene sedimentaire archieven van de Baltische Zee en kustzeeën van het Iberisch schiereiland voor paleomilieureconstructie (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op vrijdag 31 maart 2017 des middags te 12.45 uur door Lisa Alexandra Warden geboren op 24 januari 1982 te Philadelphia, Verenigde Staten van Amerika Promotor: Prof. dr. ir. J.S. Sinninghe Damsté This work has been financially supported by the European Research Council (ERC) and the NIOZ Royal Netherlands Institute for Sea Research. “We are the first generation to feel the impact of climate change and the last generation that can do something about it.” -President Obama For Lauchlan, who was with me the whole time as I wrote this thesis. Photo by Dietmar Rüß Contents Chapter 1 – Introduction 9 Chapter 2 - Climate forced human demographic and cultural change in -
The Evolution of Crayfishes of the Genus Orconectes Section Limosus (Crustacea: Decopoda)
THE OHIO JOURNAL OF SCIENCE Vol. 62 MARCH, 1962 No. 2 THE EVOLUTION OF CRAYFISHES OF THE GENUS ORCONECTES SECTION LIMOSUS (CRUSTACEA: DECOPODA) RENDELL RHOADES Department of Zoology and Entomology, The Ohio State University, Columbus 10 The earliest described crayfish species now included in the Section limosus of the Genus Orconectes was described by Samuel Constantine Rafinesque (1817: 42). He reported the species, which he named Astacus limosus, "in the muddy banks of the Delaware, near Philadelphia." How ironical it now seems, that when Rafinesque located at Transylvania three years later and traveled to Henderson, Kentucky, to visit a fellow naturalist, John J. Audubon, he could have collected from the streams of western Kentucky a crayfish that he might have identified as the species he had described from the Delaware. We now know that these streams of the knobstone and pennyroyal uplands are the home of parent stock of this group. Moreover, this parental population on the Cumberland Plateau is now separated from Rafinesque's Orconectes limosus of the Atlantic drainage by more than 500 miles of mountainous terrain. Even Rafinesque, with his flair for accuracy and vivid imagination, would have been taxed to explain this wide separation had he known it. A decade after the death of Rafinesque, Dr. W. T. Craige received a blind crayfish from Mammoth Cave. An announcement of the new crayfish, identi- fied as "Astacus bartonii (?)" appeared in the Proceedings of the Academy of Natural Science of Philadelphia (1842: 174-175). Within two years the impact of Dr. Craige's announcement was evidenced by numerous popular articles both here and abroad. -
Post-Glacial History of Sea-Level and Environmental Change in the Southern Baltic Sea
Post-Glacial History of Sea-Level and Environmental Change in the Southern Baltic Sea Kortekaas, Marloes 2007 Link to publication Citation for published version (APA): Kortekaas, M. (2007). Post-Glacial History of Sea-Level and Environmental Change in the Southern Baltic Sea. Department of Geology, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Post-glacial history of sea-level and environmental change in the southern Baltic Sea Marloes Kortekaas Quaternary Sciences, Department of Geology, GeoBiosphere Science Centre, Lund University, Sölvegatan 12, SE-22362 Lund, Sweden This thesis is based on four papers listed below as Appendices I-IV. -
Land Uplift and Relative Sea-Level Changes in the Loviisa Area, Southeastern Finland, During the Last 8000 Years
F10000009 POSIVA 99-28 Land uplift and relative sea-level changes in the Loviisa area, southeastern Finland, during the last 8000 years Arto Miettinen Matti Eronen Hannu Hyvarinen Department of Geology University of Helsinki September 1999 POSIVA OY Mikonkatu 15 A. FIN-001O0 HELSINKI, FINLAND Phone (09) 2280 30 (nat.). ( + 358-9-) 2280 30 (int.) Fax (09) 2280 3719 (nat.), ( + 358-9-) 2280 3719 (int.) POSIVA 99-28 Land uplift and relative sea-level changes in the Loviisa area, southeastern Finland, during the last 8000 years Arto Miettinen Matti Eronen Hannu Hyvarinen September 1999 POSIVA OY Mikonkatu 15 A, FIN-OO1OO HELSINKI, FINLAND Phone (09) 2280 30 (nat.), ( + 358-9-) 2280 30 (int.) 3 1/23 Fax (09) 2280 3719 (nat.), ( + 358-9-) 2280 3719 (int.) Posiva-raportti - Posiva Report Raporfintumus-Report <»*> POSIVA 99-28 Posiva Oy . Mikonkatu 15 A, FIN-00100 HELSINKI, FINLAND JuikaisuaiKa Date Puh. (09) 2280 30 - Int. Tel. +358 9 2280 30 September 1999 Tekija(t) - Author(s) Toimeksiantaja(t) - Commissioned by Arto Miettinen MattiEronen Posiva Oy Hannu Hyvannen y Department of Geology, University of Helsinki Nimeke - Title LAND UPLIFT AND RELATIVE SEA-LEVEL CHANGES IN THE LOVIISA AREA, SOUTHEASTERN FINLAND, DURING THE LAST 8000 YEARS Tiivistelma - Abstract Southeastern Finland belongs to the area covered by the Weichselian ice sheet, where the release of the ice load caused a rapid isostatic rebound during the postglacial time. While the mean overall apparent uplift is of the order of 2 mm/yr today, in the early Holocene time it was several times higher. A marked decrease in the rebound rate occurred around 8500 BP, however, since then the uplift rate has remained high until today, with a slightly decreasing trend towards the present time. -
Mcmillan, Tyler 1999.Tif
oPTrxd MY:'IORIPLL~BRPR~ TI~C ''fi-P,E ~'h'ivf~s~~y '185 S ,/ ~PJ.DF:'IE Senior Thesis Geology of The Ohio State University, Columbus Campus BY Tyler D. McMillan 1999 Submitted as partial fulfillment of The requirements for the degree of Bachelor of Science in Geological Sciences At The Ohio State University, Spring Quarter, 1999 Approved by: Dr. Garry McKenzie Table of Contents Page INTRODUCTION 1 Purpose of the Study i Location, Topography, and Geology 1 GEOLOGY AND GEOLOGIC HISTORY OF FRANKLIN COUNTY Quaternary Kansan (Pre- Illinoian) Glaciation Illinoian Glaciation Wisconsinan Glaciation Paleozoic Geologic History Columbus Limestone Delaware Formation Ohio and Olentangy Shale UNCONSLIDATED MATERIALS OF OSU CAMPUS Glacial and Post-glacial Deposits Soils of the OSU Campus CsB Crosby-Urban land complex CrB Crosby silt loam KO Kokomo silty clay loam Ut Udenthents-Urban land complex CfB Celina-Urban land comlex MnC Miamian-Urban land complex ErnB Eldean-Urban land complex Rs Ross silt loam Uw Urban land-Genesee complex Ux Urban land-Ockley complex Uv Urban land-Celina complex HYDROGEOLOGY OF THE OSU CAMPUS Groundwater in the Consolidated Rocks Groundwater in Surficial Aquifers STRATIGRAPHY OF THE SURFICIAL DEPOSITS OF THE OSU CAMPUS 23 CONCLUSION 30 List of Figures Page Figure I Physiographic diagram of Ohio (from Schmidt and Goldthwait, 1950) Figure 2 Bedrock geologic map and cross section of Ohio (Ohio Geological Survey, 1995) Figure 3 Glacial deposits map of Ohio (Ohio Geological Survey, 1997) 5 Figure 4 Bedrock topography and flow -
Late Weichselian and Holocene Shore Displacement History of the Baltic Sea in Finland
Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland MATTI TIKKANEN AND JUHA OKSANEN Tikkanen, Matti & Juha Oksanen (2002). Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland. Fennia 180: 1–2, pp. 9–20. Helsinki. ISSN 0015-0010. About 62 percent of Finland’s current surface area has been covered by the waters of the Baltic basin at some stage. The highest shorelines are located at a present altitude of about 220 metres above sea level in the north and 100 metres above sea level in the south-east. The nature of the Baltic Sea has alter- nated in the course of its four main postglacial stages between a freshwater lake and a brackish water basin connected to the outside ocean by narrow straits. This article provides a general overview of the principal stages in the history of the Baltic Sea and examines the regional influence of the associated shore displacement phenomena within Finland. The maps depicting the vari- ous stages have been generated digitally by GIS techniques. Following deglaciation, the freshwater Baltic Ice Lake (12,600–10,300 BP) built up against the ice margin to reach a level 25 metres above that of the ocean, with an outflow through the straits of Öresund. At this stage the only substantial land areas in Finland were in the east and south-east. Around 10,300 BP this ice lake discharged through a number of channels that opened up in central Sweden until it reached the ocean level, marking the beginning of the mildly saline Yoldia Sea stage (10,300–9500 BP). -
The Late Quaternary Development of the Baltic Sea
The late Quaternary development of the Baltic Sea Svante Björck, GeoBiosphere Science Centre, Department of Geology, Quaternary Sciences, Lund University, Sölveg. 12, SE-223 62 Lund, Sweden INTRODUCTION Since the last deglaciation of the Baltic basin, which began 15 000-17 000 cal yr BP (calibrated years Before Present) and ended 11 000-10 000 cal yr BP, the Baltic has undergone many very different phases. The nature of these phases were determined by a set of forcing factors: a gradually melting Scandinavian Ice Sheet ending up into an interglacial environment, the highly differential glacio-isostatic uplift within the basin (from 9 mm/yr to -1mm/yr; Ekman 1996), changing geographic position of the controlling sills (Fig. 1), varying depths and widths of the thresholds between the sea and the Baltic basin, and climate change. These factors have caused large variations in salinity and water exchange with the outer ocean, rapid to gradual paleographic alterations with considerable changes of the north-south depth profile with time. For example, the area north of southern Finland-Stockholm has never experienced transgressions, or land submergence, while the developmen south of that latitude has been very complex. The different controlling factors are also responsible for highly variable sedimentation rates, both in time and space, and variations of the aquatic productivity as well as faunal and floral changes. The basic ideas in this article follow the lengthy, but less up-dated version of the Baltic Sea history (Björck, 1995), a more complete reference list and, e.g., the calendar year chronology of the different Baltic phases can be found on: http://www.geol.lu.se/personal/seb/Maps%20of%20the%20Baltic.htm. -
In the Wake of Deglaciation - Sedimentary Signatures of Ice-Sheet Decay and Sea-Level Change
! "# "$%&%'($$) * * +%,( - ."" %% /( 0 * 1 ./-2+ .-2/ *./3 4 .34/ 4*./5 6 .6/ 47 ( .-2/ .34 6/ 5 * * * ( 4 7 *-2 ( -2 8 ! 0(6 70-*9 * - (: ;<'$=<$( 7( 7 0-* %%><$="&$( 7(3 * 70-.?%"(&( 7/ 9 ( - *34 3 .?%%( 7/ 7 * @ (6 7 5 34 (3 * @ 7 (6 A 34(6 @ ( ! 5B 9 5 C * @ 5B @ (6 . :/ *6* (6 D: - 0(@ @ * * - 5(6 5B @ ( !" "$%& 1EE ( ( E F G 1 1 1 1%<';$> 07:;#&;%##;#%>', 07:;#&;%##;#%>,% ! *%$>;% IN THE WAKE OF DEGLACIATION - SEDIMENTARY SIGNATURES OF ICE-SHEET DECAY AND SEA-LEVEL CHANGE Henrik Swärd In the wake of deglaciation - sedimentary signatures of ice-sheet decay and sea-level change Studies from south-central Sweden and the western Arctic Ocean Henrik Swärd ©Henrik Swärd, Stockholm University 2018 ISBN print 978-91-7797-163-4 ISBN PDF 978-91-7797-164-1 Cover: Sólheimajökull, Iceland. Photo: Henrik Swärd Printed in Sweden by Universitetsservice US-AB, Stockholm 2018 Distributor: Department of Geological Sciences, Stockholm University S.D.G. Abstract Lacustrine and marine sedimentary archives help -
Sessions Calendar
Associated Societies GSA has a long tradition of collaborating with a wide range of partners in pursuit of our mutual goals to advance the geosciences, enhance the professional growth of society members, and promote the geosciences in the service of humanity. GSA works with other organizations on many programs and services. AASP - The American Association American Geophysical American Institute American Quaternary American Rock Association for the Palynological Society of Petroleum Union (AGU) of Professional Association Mechanics Association Sciences of Limnology and Geologists (AAPG) Geologists (AIPG) (AMQUA) (ARMA) Oceanography (ASLO) American Water Asociación Geológica Association for Association of Association of Earth Association of Association of Geoscientists Resources Association Argentina (AGA) Women Geoscientists American State Science Editors Environmental & Engineering for International (AWRA) (AWG) Geologists (AASG) (AESE) Geologists (AEG) Development (AGID) Blueprint Earth (BE) The Clay Minerals Colorado Scientifi c Council on Undergraduate Cushman Foundation Environmental & European Association Society (CMS) Society (CSS) Research Geosciences (CF) Engineering Geophysical of Geoscientists & Division (CUR) Society (EEGS) Engineers (EAGE) European Geosciences Geochemical Society Geologica Belgica Geological Association Geological Society of Geological Society of Geological Society of Union (EGU) (GS) (GB) of Canada (GAC) Africa (GSAF) Australia (GSAus) China (GSC) Geological Society of Geological Society of Geologische Geoscience -
Past Shore-Level and Sea-Level Displacements
SGU Rapporter och meddelanden 137 Rapporter och meddelanden 137 Past shore-level and sea-level displacements Tore Påsse & Johan Daniels Past shore-level and sea-level displacements Rapporter och meddelanden 137 Past shore-level and sea-level displacements Tore Påsse & Johan Daniels Sveriges geologiska undersökning 2015 ISSN 0349-2176 ISBN 978-91-7403-291-8 Cover: Paleogeograpical map showing the distribution of land (green), ice (white) and sea and lakes (blue). This map was con- structed by the model presented in this paper. © Sveriges geologiska undersökning Layout: Rebecca Litzell Tryck: Elanders Sverige AB Contents Sammanfattning ..................................................................................................................... 4 Abstract .................................................................................................................................... 5 Introduction ............................................................................................................................. 6 The shore-level model ............................................................................................................ 7 Empirical data ........................................................................................................................... 7 Method ..................................................................................................................................... 8 Formulas for land uplift ...........................................................................................................