Past Shore-Level and Sea-Level Displacements
Total Page:16
File Type:pdf, Size:1020Kb
SGU Rapporter och meddelanden 137 Rapporter och meddelanden 137 Past shore-level and sea-level displacements Tore Påsse & Johan Daniels Past shore-level and sea-level displacements Rapporter och meddelanden 137 Past shore-level and sea-level displacements Tore Påsse & Johan Daniels Sveriges geologiska undersökning 2015 ISSN 0349-2176 ISBN 978-91-7403-291-8 Cover: Paleogeograpical map showing the distribution of land (green), ice (white) and sea and lakes (blue). This map was con- structed by the model presented in this paper. © Sveriges geologiska undersökning Layout: Rebecca Litzell Tryck: Elanders Sverige AB Contents Sammanfattning ..................................................................................................................... 4 Abstract .................................................................................................................................... 5 Introduction ............................................................................................................................. 6 The shore-level model ............................................................................................................ 7 Empirical data ........................................................................................................................... 7 Method ..................................................................................................................................... 8 Formulas for land uplift ............................................................................................................ 12 Formulae for eustasy ................................................................................................................. 12 Water level changes in the Baltic ............................................................................................... 12 Modelling using shore-level curves ........................................................................................... 13 Modelling using data on the highest coastline ......................................................................... 13 Modelling using tide gauge records .......................................................................................... 14 Statistical treatment .................................................................................................................. 16 Testing the model ..................................................................................................................... 16 Results and discussion ............................................................................................................ 20 The course of glacio-isostatic uplift in Scandinavia ................................................................... 20 Eustatic development ................................................................................................................ 20 Paleogeographical maps and visualisation of shore-level changes .............................................. 24 Conclusions .............................................................................................................................. 26 Acknowledgements ................................................................................................................ 27 References ............................................................................................................................... 28 Sammanfattning Strandförskjutningen och landhöjningsförloppet i pet kunnat beräknas med relativt stor noggrannhet. Skandinavien har beräknats från empiriska data. Be- Havsnivåns förändringar beror på två komponenter, räkningarna har gjorts utgående från 92 strandför- dels den huvudsakliga havsytehöjningen, dels en os- skjutningskurvor, fyra detaljerade sjöstjälpningskurvor, cillatorisk komponent som skapat små förändringar 1 150 HK-värden och mätserier från 57 pegelstationer. mellan höjningar och sänkningar. Periodiciteten för Denna modellering är den enda som gjorts med hjälp oscillationerna är ca 550 år. Båda komponenterna styrs av empirisk landhöjningsinformation. Genom tillgång av klimatet. till landhöjningsdata har det globala eustatiska förlop- Nyckelord: Havsytehöjning, landhöjning, strandförskjutning, strandnivåkartor 4 TORE PÅSSE & JOHAN DANIELS Abstract Shore-level displacement and glacio-isostatic uplift in source other than sea-level data, it has been possible to the area affected by the Scandinavian ice sheet have calculate global eustatic development within the model. been calculated using empirical data. The calculations Eustatic development comprises two movements: the are based on 92 shore-level curves from Scandinavia, main eustatic rise and an oscillatory movement, which four detailed lake-tilting investigations, 1 150 levels of have created small changes between rises and falls in the highest coastline, and 57 tide-gauge data. This is the sea-level. Both these movements essentially mirror cli- only shore-level model based on empirical data on the mate trends. The periodicity of the oscillations is ap- crustal uplift. Since the uplift process is known from a proximately 550 years. Key words: eustasy, glacio-isostasy, shore-level displacement, land uplift, paleogeography. PAST SHORE-LEVEL AND SEA-LEVEL DISPLACEMENTS R & M 137 5 Introduction Shore-level displacement is caused by two interactive There are practically no tides along the west coast of movements: local crustal depression or uplift and global Sweden or in the Baltic Sea. The tidal range is normally eustatic sea-level lowering or rise. This paper presents a less than 5 cm. Sea-level observations have been per- model for calculating these movements. formed in Stockholm since 1774, and this record is one After the Weichselian glaciation, which culminated of the longest continuous sea-level series in the world. around 21 000 BP, water that had been locked in con- Whitehouse (2009) has presented a detailed review tinental ice sheets returned to the global ocean. The of the current understanding of glacial-isostatic adjust- melting of the great ice sheets caused the isostatically ment developed by leading researchers in this field. depressed crust to elevate as pressure on it lessened. There are two methods for modelling shore-level dis- At the same time the ocean bottom sank when glacial placement. The most common is to model shore-level meltwater entered the ocean, causing the continental displacement by combining information on the geo- margins to tilt upwards – a result of hydro-isostatic physical structure of the Earth with information on levering. According to Walcott (1972), there are three the evolution of surface loading from dated shorelines sea-level regions: and ice-sheet reconstructions (Cathles 1975, Fjeldskaar 1994, 2000, Fjeldskaar & Cathles 1991, Lambeck 1991, 1. Large uplift under the melting ice sheet. 1997, 1999, McConnel 1968, Peltier 1974, 1976). Most 2. Submergence peripheral to the ice sheets. of these studies focus on analysing the isostatic mecha- 3. Coastal tilting causing the emergence of continental nism. Variations in the volume and distribution of ice shorelines distant from the ice. are the principal cause of sea-level change. Information on temporal and spatial evolution of ice sheets must The interaction of sea-level rise and crustal rise has thus be very accurate for the creation of a detailed model produced a regionally variable shore-level displacement of glacial-isostatic change from geophysical modelling. history, making it difficult to isolate eustatic changes. Such information does not exist at present. Fennoscandia, especially Sweden, has outstanding An alternative method of modelling shore-level dis- conditions for shore-level investigations. Most shore- placement, used in this paper, is to analyse exclusively lines formed during the late Weichselian and Holocene empirical shore-level data with spatial statistics and are situated above the present sea-level. There is a greater mathematical calculations (Påsse 1996a, 1997, 2001, density of shore-level data in Scandinavia than anywhere Påsse & Andersson 2005, Påsse & Daniels 2011). The else in the world. Lakes, suitable for constructing shore- main focus of this research is to achieve better know- level curves, are abundant in the region. More than ledge of shore-level displacement in areas where empiri- 1 000 highest coastline sites, between 20 and 285 m cal data do not exist, but also to achieve better know- above present sea-level, are reported within Sweden. ledge of eustatic changes. 6 TORE PÅSSE & JOHAN DANIELS The shore-level model EMPIRICAL DATA changes, and the course of glacio-isostatic uplift can be We have developed our shore-level model using empiri- described using numerical estimates alone. cal data from four sources: lake-tilting data, shore-level Detailed studies of glacio-isostatically induced tilt- curves, tide gauge data and elevations of the highest ing of four lakes in southern Sweden have been pre- coastline. The positions of the data sets are shown in sented by Påsse (1990a, 1996b, 1998). An example of Figure 1. this is shown in Figure 2. Lake-tilting data show the difference in uplift be- The primary information used in shore-level model- tween the sampling sites and the outlets. The lake-tilt- ling is shore-level curves representing continuous sets ing method is an outstanding tool for modelling glacio- of data. 92 shore-level curves from the area covered by isostatic movements, as the data do not include eustatic Scandinavian ice during