Monographs in Computer Science

Total Page:16

File Type:pdf, Size:1020Kb

Monographs in Computer Science Monographs in Computer Science Editors David Gries Fred B. Schneider Springer New York Berlin Heidelberg Hong Kong London Milan Paris Tokyo Andrew Herbert Karen Spa¨rck Jones Editors Computer Systems Theory, Technology, and Applications A Tribute to Roger Needham With 110 Illustrations Andrew Herbert Karen Spa¨rck Jones Microsoft Research Ltd. Computer Laboratory Roger Needham Building University of Cambridge 7 JJ Thomson Avenue JJ Thomson Avenue Cambridge CB3 0FB Cambridge CB3 0FD UK UK Series Editors: David Gries Fred B. Schneider Department of Computer Science Department of Computer Science The University of Georgia Cornell University 415 Boyd Graduate Studies 4115C Upson Hall Research Center Ithaca, NY 14853-7501 Athens, GA 30602-7404 USA USA Library of Congress Cataloging-in-Publication Data Herbert, A.J. (Andrew J.), 1954– Computer systems: theory, technology, and applications/[edited by] Andrew J. Herbert, Karen I.B. Spa¨rck Jones p. cm. — (Monographs in computer science) Includes bibliographical references. ISBN 0-387-20170-X (alk. paper) 1. System design. 2. Computer science. I. Spa¨rck Jones, Karen I.B. II. Needham, R.M. (Roger Michael) III. Title. IV. Series. QA276.9.S88H45 2004 005.1′2—dc21 2003066215 ISBN 0-387-20170-X Printed on acid-free paper. © 2004 Springer-Verlag New York, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or here- after developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (SBA) 987654321 SPIN 10944769 Springer-Verlag is part of Springer Science+Business Media springeronline.com Roger Needham 1935 – 2003 Contents Preface xi Roger Needham: 50 + 5 Meeting Programme xiii Contributors xv Introduction: Roger Needham Rick Rashid 1 1 On Access Control, Data Integration, and Their Languages Martín Abadi 9 2 Protocol Analysis, Composability and Computation Ross Anderson, Michael Bond 15 3 Access Control in Distributed Systems Jean Bacon, Ken Moody 21 4 Implementing Condition Variables with Semaphores Andrew D. Birrell 29 5 Clumps, Clusters and Classification Christopher M. Bishop 39 6 How to Implement Unnecessary Mutexes Mike Burrows 51 7 Bioware Languages Luca Cardelli 59 8 The Economics of Open Systems David D. Clark 67 9 From Universe to Global Internet Jon Crowcroft 73 10 Needham-Schroeder Goes to Court Dorothy E. Denning 77 11 The Design of Reliable Operating Systems Peter Denning 79 12 An Historical Connection between Time-Sharing and Virtual Circuits Sandy Fraser 85 13 On Cross-Platform Security Li Gong 89 14 Distributed Computing Economics Jim Gray 93 15 The Titan Influence David Hartley 103 16 Middleware? Muddleware? Andrew Herbert 109 17 Grand Challenges for Computing Research viii Contents Tony Hoare 117 18 Sentient Computing Andy Hopper 125 19 Cyber Security in Open Systems Anita Jones 133 20 Software Components: Only the Giants Survive Butler W. Lampson 137 21 Security Protocols: Who Knows What Exactly? Peter Landrock 147 22 Volume Rendering by Ray-Casting in Shear-Image Order Hugh C. Lauer, Yin Wu, Vishal Bhatia, Larry Seiler 153 23 A Conceptual Authorization Model for Web Services Paul J. Leach, Chris Kaler, Blair Dillaway, Praerit Garg, Brian LaMacchia, Butler Lampson, John Manferdelli, Rick Rashid, John Shewchuk, Dan Simon, Richard Ward 165 24 The Trouble with Standards E. Stewart Lee 173 25 Novelty in the Nemesis Operating System Ian Leslie 177 26 A Technology Transfer Retrospective Roy Levin 185 27 An Optical LAN Derek McAuley 195 28 What’s in a Name? Robin Milner 205 29 The Cryptographic Role of the Cleaning Lady Bob Morris 211 30 Real Time in a Real Operating System Sape J. Mullender, Pierre G. Jansen 213 31 Zen and the Art of Research Management John Naughton, Robert W. Taylor 223 32 The Descent of BAN Lawrence C. Paulson 225 33 Brief Encounters Brian Randell 229 34 Retrieval System Models: What’s New? Stephen Robertson, Karen Spärck Jones 237 35 Slammer: An Urgent Wake-Up Call Jerome H. Saltzer 243 36 Caching Trust Rather Than Content M. Satyanarayanan 249 37 Least Privilege and More Fred B. Schneider 253 38 Using Sharing to Simplify System Management Michael D. Schroeder 259 Contents ix 39 An RSA-Related Number-Theoretic Surprise Gustavus J. Simmons 269 40 Application-Private Networks Jonathan M. Smith 273 41 Using the CORAL System to Discover Attacks on Security Protocols Graham Steel, Alan Bundy, Ewen Denney 279 42 On the Role of Binding and Rate Adaptation in Packet Networks David Tennenhouse 287 43 Technologies for Portable Computing Chuck Thacker 295 44 Multiple Alternative Voting David Wheeler 305 45 The Semiotics of Umbrellas John Wilkes 311 46 Computers for Specialized Application Areas Maurice Wilkes 317 Computer Security? Roger Needham 319 Roger Needham: Publications Karen Spärck Jones 327 Preface Roger learnt that he was seriously ill late in December 2002. When he heard this, Rick Rashid, Microsoft Senior Vice-President for Research, suggested that there should be some occasion to mark Roger’s contribution to the field, and an asso- ciated publication. In response, we proposed a one-day meeting with both technical talks and a more personal session about Roger, with the presentation of a volume of papers from Roger’s many technical colleagues as the key element. There was not much time to prepare the volume. So we asked for short pa- pers on any technical topic of each contributor’s choosing likely to be of interest to Roger. The papers could be on an area of current research, a conjecture about the future, or an historical reflection. They had to be delivered in four weeks. We much appreciated the rapid and enthusiastic responses to our invitation, and were delighted with the range of topics covered and their technical interest. We were also grateful, as each editor reviewed all the papers, for the positive spirit with which our comments and suggestions were received. The meeting itself, ‘Roger Needham: 50 and 5,’ marking Roger’s fifty years in Cambridge and five at Microsoft Research, took place on February 17th, 2003. The programme is given, for reference, following this Preface. The entire proceedings were recorded, publicly available at: http://www.research.microsoft.com/needhambook We would like to thank all those who wrote for the volume, and those who spoke at the meeting. We know that Roger was very touched by how many came to the meeting, some from far away, by how many wrote for the volume and in doing so re- sponded to his interests, by the references to his work in the technical talks, and by the accounts of his roles and contributions in the presentation session. At the end of the meeting he said: The first thing to say is thank you very much—which is sort of obvious. The next thing I want to say is one or two words about what I’ve done and what my subject is. In many sorts of engineering the theoretical background is obvious: it’s continuous mathematics which comes from the 18th century. In computing there is a theoretical background and it’s not obvious but it had to be invented, and people in the theoretical part of our subject have devoted themselves to inventing it—which is fine because you can’t expect it to hap- pen by itself and you can’t go and build computer systems with any complex- ity at all without some formalised understanding to fall back on. xii Preface It is an odd thing that in my career I have contributed one or two bits to that, but that’s basically not what I’m about. I have the greatest respect for the people who build the theoretical underpin- nings of our subject, and I wish them every success because it will enable the people who want to get on and make things to do it better and to do it more quickly and to do it with less mistakes—and all of this is good: but at the end of the day I am a engineer— and so saying, he put on his engineer’s hard hat. He died less than two weeks later, on March 1st. Roger’s last major talk was his Clifford Paterson Lecture ‘Computer secu- rity?’ at The Royal Society in November 2002. We have included its text, which is also posthumously published in the Society’s Philosophical Transactions,as the last paper in the volume, along with a complete list of Roger’s publications. We have used the classic Needham-Schroeder authentication protocol as the cover design. The papers in this volume are as they originally appeared for the meeting, apart from some minor corrections and some small modifications, necessary in the circumstances, to specific references to Roger. These papers address issues over the whole area of computer systems, from hardware through operating systems and middleware to applications, with their languages and their implementations, and from devices to global networks; also from many points of view, from designers to users, with lessons from the past or concerns for the future. Collectively, they illustrate what it means to be a com- puter system. Acknowledgements We are very grateful to Microsoft for supporting the celebration meeting itself, producing the volume in its original form, and for further supporting the prepara- tion of the volume for formal publication.
Recommended publications
  • Early Stored Program Computers
    Stored Program Computers Thomas J. Bergin Computing History Museum American University 7/9/2012 1 Early Thoughts about Stored Programming • January 1944 Moore School team thinks of better ways to do things; leverages delay line memories from War research • September 1944 John von Neumann visits project – Goldstine’s meeting at Aberdeen Train Station • October 1944 Army extends the ENIAC contract research on EDVAC stored-program concept • Spring 1945 ENIAC working well • June 1945 First Draft of a Report on the EDVAC 7/9/2012 2 First Draft Report (June 1945) • John von Neumann prepares (?) a report on the EDVAC which identifies how the machine could be programmed (unfinished very rough draft) – academic: publish for the good of science – engineers: patents, patents, patents • von Neumann never repudiates the myth that he wrote it; most members of the ENIAC team contribute ideas; Goldstine note about “bashing” summer7/9/2012 letters together 3 • 1.0 Definitions – The considerations which follow deal with the structure of a very high speed automatic digital computing system, and in particular with its logical control…. – The instructions which govern this operation must be given to the device in absolutely exhaustive detail. They include all numerical information which is required to solve the problem…. – Once these instructions are given to the device, it must be be able to carry them out completely and without any need for further intelligent human intervention…. • 2.0 Main Subdivision of the System – First: since the device is a computor, it will have to perform the elementary operations of arithmetics…. – Second: the logical control of the device is the proper sequencing of its operations (by…a control organ.
    [Show full text]
  • Optimizing the Block Cipher Resource Overhead at the Link Layer Security Framework in the Wireless Sensor Networks
    Proceedings of the World Congress on Engineering 2008 Vol I WCE 2008, July 2 - 4, 2008, London, U.K. Optimizing the Block Cipher Resource Overhead at the Link Layer Security Framework in the Wireless Sensor Networks Devesh C. Jinwala, Dhiren R. Patel and Kankar S. Dasgupta, data collected from different sensor nodes. Since the Abstract—The security requirements in Wireless Sensor processing of the data is done on-the-fly, while being Networks (WSNs) and the mechanisms to support the transmitted to the base station; the overall communication requirements, demand a critical examination. Therefore, the costs are reduced [2]. Due to the multi-hop communication security protocols employed in WSNs should be so designed, as and the in-network processing demanding applications, the to yield the optimum performance. The efficiency of the block cipher is, one of the important factors in leveraging the conventional end-to-end security mechanisms are not performance of any security protocol. feasible for the WSN [3]. Hence, the use of the standard In this paper, therefore, we focus on the issue of optimizing end-to-end security protocols like SSH, SSL [4] or IPSec [5] the security vs. performance tradeoff in the security protocols in WSN environment is rejected. Instead, appropriate link in WSNs. As part of the exercise, we evaluate the storage layer security architecture, with low associated overhead is requirements of the block ciphers viz. the Advanced Encryption required. Standard (AES) cipher Rijndael, the Corrected Block Tiny Encryption Algorithm (XXTEA) using the Output Codebook There are a number of research attempts that aim to do so.
    [Show full text]
  • The Advent of Recursion & Logic in Computer Science
    The Advent of Recursion & Logic in Computer Science MSc Thesis (Afstudeerscriptie) written by Karel Van Oudheusden –alias Edgar G. Daylight (born October 21st, 1977 in Antwerpen, Belgium) under the supervision of Dr Gerard Alberts, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: November 17, 2009 Dr Gerard Alberts Prof Dr Krzysztof Apt Prof Dr Dick de Jongh Prof Dr Benedikt Löwe Dr Elizabeth de Mol Dr Leen Torenvliet 1 “We are reaching the stage of development where each new gener- ation of participants is unaware both of their overall technological ancestry and the history of the development of their speciality, and have no past to build upon.” J.A.N. Lee in 1996 [73, p.54] “To many of our colleagues, history is only the study of an irrele- vant past, with no redeeming modern value –a subject without useful scholarship.” J.A.N. Lee [73, p.55] “[E]ven when we can't know the answers, it is important to see the questions. They too form part of our understanding. If you cannot answer them now, you can alert future historians to them.” M.S. Mahoney [76, p.832] “Only do what only you can do.” E.W. Dijkstra [103, p.9] 2 Abstract The history of computer science can be viewed from a number of disciplinary perspectives, ranging from electrical engineering to linguistics. As stressed by the historian Michael Mahoney, different `communities of computing' had their own views towards what could be accomplished with a programmable comput- ing machine.
    [Show full text]
  • Software Tools: a Building Block Approach
    SOFTWARE TOOLS: A BUILDING BLOCK APPROACH NBS Special Publication 500-14 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards ] NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the ! Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab- oratory Astrophysics^ — Cryogenics^ — Electromagnetics^ — Time and Frequency*. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measure- ment, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational insti- tutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials.
    [Show full text]
  • A Networked Robotic System and Its Use in an Oil Spill Monitoring Exercise
    A Networked Robotic System and its Use in an Oil Spill Monitoring Exercise El´oiPereira∗† Co-authors: Pedro Silvay, Clemens Krainerz, Christoph Kirschz, Jos´eMorgadoy, and Raja Sengupta∗ cpcc.berkeley.edu, eloipereira.com [email protected] Swarm at the Edge of the Could - ESWeek'13, Montreal, Canada September 29, 2013 ∗ - Systems Engineering, UC Berkeley y - Research Center, Portuguese Air Force Academy z - Computer Science Dept., University of Salzburg Programming the Ubiquitous World • In networked mobile systems (e.g. teams of robots, smartphones, etc.) the location and connectivity of \machines" may vary during the execution of its \programs" (computation specifications) • We investigate models for bridging \programs" and \machines" with dynamic structure (location and connectivity) • BigActors [PKSBdS13, PPKS13, PS13] are actors [Agh86] hosted by entities of the physical structure denoted as bigraph nodes [Mil09] E. Pereira, C. M. Kirsch, R. Sengupta, and J. B. de Sousa, \Bigactors - A Model for Structure-aware Computation," in ACM/IEEE 4th International Conference on Cyber-Physical Systems, 2013, pp. 199-208. Case study: Oil spill monitoring scenario • \Bilge dumping" is an environmental problem of great relevance for countries with large area of jurisdictional waters • EC created the European Maritime Safety Agency to \...prevent and respond to pollution by ships within the EU" • How to use networked robotics to monitor and take evidences of \bilge dumping" Figure: Portuguese Jurisdiction waters and evidences of \Bilge dumping".
    [Show full text]
  • Edsger W. Dijkstra: a Commemoration
    Edsger W. Dijkstra: a Commemoration Krzysztof R. Apt1 and Tony Hoare2 (editors) 1 CWI, Amsterdam, The Netherlands and MIMUW, University of Warsaw, Poland 2 Department of Computer Science and Technology, University of Cambridge and Microsoft Research Ltd, Cambridge, UK Abstract This article is a multiauthored portrait of Edsger Wybe Dijkstra that consists of testimo- nials written by several friends, colleagues, and students of his. It provides unique insights into his personality, working style and habits, and his influence on other computer scientists, as a researcher, teacher, and mentor. Contents Preface 3 Tony Hoare 4 Donald Knuth 9 Christian Lengauer 11 K. Mani Chandy 13 Eric C.R. Hehner 15 Mark Scheevel 17 Krzysztof R. Apt 18 arXiv:2104.03392v1 [cs.GL] 7 Apr 2021 Niklaus Wirth 20 Lex Bijlsma 23 Manfred Broy 24 David Gries 26 Ted Herman 28 Alain J. Martin 29 J Strother Moore 31 Vladimir Lifschitz 33 Wim H. Hesselink 34 1 Hamilton Richards 36 Ken Calvert 38 David Naumann 40 David Turner 42 J.R. Rao 44 Jayadev Misra 47 Rajeev Joshi 50 Maarten van Emden 52 Two Tuesday Afternoon Clubs 54 2 Preface Edsger Dijkstra was perhaps the best known, and certainly the most discussed, computer scientist of the seventies and eighties. We both knew Dijkstra |though each of us in different ways| and we both were aware that his influence on computer science was not limited to his pioneering software projects and research articles. He interacted with his colleagues by way of numerous discussions, extensive letter correspondence, and hundreds of so-called EWD reports that he used to send to a select group of researchers.
    [Show full text]
  • A Common Programming Language for the Depart Final Ment of Defenses-Background and Technical January -December 1975 1 Requirements «
    Approved for public release; distribution unlimited I 1 PAPER P-1191 A COMMON PROGRAMMING LANGUAGE 1 FOR THE DEPARTMENT OF DEFENSE - - I BACKGROUND AND TECHNICAL REQUIREMENTS I I D. A. Fisher June 1976 I 1 I I I I INSTITUTE FOR DEFENSE ANALYSES I SCIENCE AND TECHNOLOGY DIVISION I I IDA Log No. HQ 76-18215 I Cop-)*- > . -JJ . of 155. cop I ess Approved for public release; distribution unlimited I I I I The work reported in this document was conducted under contract DAHC15 73 C 0200 for the Department of Defense. The publication I of this IDA Paper does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official position of that agency. I I I I This document has been approved for public release, distribution is unlimited. I I 1 1 1 I I I Copyright IDA/Scanned June 2007 I 1 Approved for public release; distribution unlimited UNCLASSIFIED - ©; ; ; : ;" -; .©, . 1 SECURITY CLASSIFICATION OF THIS PAGE CWnen DM* Entered; READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM ). RECIPIENT©S CATALOG NUMBER 1 Paper P-J.191. 4. TITLE fend Subtitle.) 5. TYPE Of REPORT e PERIOD COVERED A Common Programming Language for the Depart Final ment of Defenses-Background and Technical January -December 1975 1 Requirements «. PERFORMING ORG. REPORT NUMBER P-1191 I. CONTRACT OR GRANT NUMBERflJ 1 DAHC15 73 C 0200 D.A, Fisher 10. PROGRAM ELEMENT. PROJECT TASK 1 INSTITUTE FOR DEFENSE ANALYSES AREA * WORK UNIT NUMBERS 400 Army-Navy Drive Task T-36 Arlington. Virginia 22202 11.
    [Show full text]
  • The Space and Motion of Communicating Agents
    The space and motion of communicating agents Robin Milner December 1, 2008 ii to my family: Lucy, Barney, Chloe,¨ and in memory of Gabriel iv Contents Prologue vii Part I : Space 1 1 The idea of bigraphs 3 2 Defining bigraphs 15 2.1 Bigraphsandtheirassembly . 15 2.2 Mathematicalframework . 19 2.3 Bigraphicalcategories . 24 3 Algebra for bigraphs 27 3.1 Elementarybigraphsandnormalforms. 27 3.2 Derivedoperations ........................... 31 4 Relative and minimal bounds 37 5 Bigraphical structure 43 5.1 RPOsforbigraphs............................ 43 5.2 IPOsinbigraphs ............................ 48 5.3 AbstractbigraphslackRPOs . 53 6 Sorting 55 6.1 PlacesortingandCCS ......................... 55 6.2 Linksorting,arithmeticnetsandPetrinets . ..... 60 6.3 Theimpactofsorting .......................... 64 Part II : Motion 66 7 Reactions and transitions 67 7.1 Reactivesystems ............................ 68 7.2 Transitionsystems ........................... 71 7.3 Subtransitionsystems .. .... ... .... .... .... .... 76 v vi CONTENTS 7.4 Abstracttransitionsystems . 77 8 Bigraphical reactive systems 81 8.1 DynamicsforaBRS .......................... 82 8.2 DynamicsforaniceBRS.... ... .... .... .... ... .. 87 9 Behaviour in link graphs 93 9.1 Arithmeticnets ............................. 93 9.2 Condition-eventnets .. .... ... .... .... .... ... .. 95 10 Behavioural theory for CCS 103 10.1 SyntaxandreactionsforCCSinbigraphs . 103 10.2 TransitionsforCCSinbigraphs . 107 Part III : Development 113 11 Further topics 115 11.1Tracking................................
    [Show full text]
  • TCM Report, Summer
    Board of Directors Corporate Donors Contributing Members John William Poduska. Sr. Benefactor-$lO.ooo or more Pathway Design. Inc. Patron-$SOO or more Chairman and CEO AFIPS. Inc." PC Magazine Anonymous. Ray Duncan. Tom Eggers. Belmont Computer. Inc. American Exr.ress Foundation Peat. Marwick. Mitchell & Co. Alan E. Frisbie. Tom and Rosemarie American Te ephone & Telegraph Co." Pell. Rudman. Inc. Hall. Andrew Lavien. Nicholas and Gwen Bell. President Apollo Computer. Inc." Pencept. Inc. Nancy Petti nella. Paul R. Pierce. The Computer Museum Bank of America" Polese-Clancy. Inc. Jonathan Rotenberg. Oliver and Kitty Erich Bloch The Boston Globe" Price Waterhouse Selfridge. J. Michael Storie. Bob National Science Foundation ComputerLand" Project Software & Development. Inc. Whelan. Leo R. Yochim Control Data Corporation" Shawmut Corporation David Donaldson Data General Corporation" Standard Oil Corporation Sponsor-$250 Ropes and Gray Digital Equipment Corporation" Teradyne Hewlett-Packard Warner & Stackpole Isaac Auerbach. G. C . Beldon. Jr .. Sydney Fernbach Philip D. Brooke. Richard J. Clayton. Computer Consultant International Data Group" XRE Corporation International Business Machines. Inc." " Contributed to the Capital Campaign Richard Corben. Howard E. Cox. Jr .. C. Lester Hogan The MITRE Corporation" Lucien and Catherine Dimino. Philip H. Fairchild Camera and Instrument NEC Corporation" Darn. Dan L. Eisner. Bob O. Evans. Corporation Raytheon Company Branko Gerovac. Dr. Roberto Guatelli. Sanders Associates M. Ernest Huber. Lawrence J. Kilgallen. Arthur Humphreys The Travelers Companies Core Members Martin Kirkpatrick. Marian Kowalski. ICL Wang Laboratories. Inc." Raymond Kurzweil. Michael Levitt. Carl Theodore G. Johnson Harlan E. and Lois Anderson Machover. Julius Marcus. Joe W .. Charles and Constance Bachman Matthews. Tron McConnell.
    [Show full text]
  • The Origins of Structural Operational Semantics
    The Origins of Structural Operational Semantics Gordon D. Plotkin Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, Scotland I am delighted to see my Aarhus notes [59] on SOS, Structural Operational Semantics, published as part of this special issue. The notes already contain some historical remarks, but the reader may be interested to know more of the personal intellectual context in which they arose. I must straightaway admit that at this distance in time I do not claim total accuracy or completeness: what I write should rather be considered as a reconstruction, based on (possibly faulty) memory, papers, old notes and consultations with colleagues. As a postgraduate I learnt the untyped λ-calculus from Rod Burstall. I was further deeply impressed by the work of Peter Landin on the semantics of pro- gramming languages [34–37] which includes his abstract SECD machine. One should also single out John McCarthy’s contributions [45–48], which include his 1962 introduction of abstract syntax, an essential tool, then and since, for all approaches to the semantics of programming languages. The IBM Vienna school [42, 41] were interested in specifying real programming languages, and, in particular, worked on an abstract interpreting machine for PL/I using VDL, their Vienna Definition Language; they were influenced by the ideas of McCarthy, Landin and Elgot [18]. I remember attending a seminar at Edinburgh where the intricacies of their PL/I abstract machine were explained. The states of these machines are tuples of various kinds of complex trees and there is also a stack of environments; the transition rules involve much tree traversal to access syntactical control points, handle jumps, and to manage concurrency.
    [Show full text]
  • Curriculum Vitae Thomas A
    Curriculum Vitae Thomas A. Henzinger February 6, 2021 Address IST Austria (Institute of Science and Technology Austria) Phone: +43 2243 9000 1033 Am Campus 1 Fax: +43 2243 9000 2000 A-3400 Klosterneuburg Email: [email protected] Austria Web: pub.ist.ac.at/~tah Research Mathematical logic, automata and game theory, models of computation. Analysis of reactive, stochastic, real-time, and hybrid systems. Formal software and hardware verification, especially model checking. Design and implementation of concurrent and embedded software. Executable modeling of biological systems. Education September 1991 Ph.D., Computer Science Stanford University July 1987 Dipl.-Ing., Computer Science Kepler University, Linz August 1986 M.S., Computer and Information Sciences University of Delaware Employment September 2009 President IST Austria April 2004 to Adjunct Professor, University of California, June 2011 Electrical Engineering and Computer Sciences Berkeley April 2004 to Professor, EPFL August 2009 Computer and Communication Sciences January 1999 to Director Max-Planck Institute March 2000 for Computer Science, Saarbr¨ucken July 1998 to Professor, University of California, March 2004 Electrical Engineering and Computer Sciences Berkeley July 1997 to Associate Professor, University of California, June 1998 Electrical Engineering and Computer Sciences Berkeley January 1996 to Assistant Professor, University of California, June 1997 Electrical Engineering and Computer Sciences Berkeley January 1992 to Assistant Professor, Cornell University December 1996 Computer Science October 1991 to Postdoctoral Scientist, Universit´eJoseph Fourier, December 1991 IMAG Laboratory Grenoble 1 Honors Member, US National Academy of Sciences, 2020. Member, American Academy of Arts and Sciences, 2020. ESWEEK (Embedded Systems Week) Test-of-Time Award, 2020. LICS (Logic in Computer Science) Test-of-Time Award, 2020.
    [Show full text]
  • Roger Needham
    The Marshall Symposium: Address: Roger Needham Table of Contents Participants The Marshall Philip Power: Good morning. In remorseless pursuit of our Scholarships timetable, which envisages a busy and crowded day, I think that it's time to get going. Home Welcome to the second session of the Marshall Symposium. I'd like to get some housekeeping matters out of the way. For those of you who don't have programs, they are available in the lobby. There will be a fifteen-minute break between the first and the second panel, at approximately ten forty-five. There will be coffee and pop available in the lobby, but we will resume our panel discussions promptly at eleven. We are hopeful of provoking as much interplay between our panels and the audience as we can. To facilitate that, there are microphones at each aisle, and so at the end of panels, people are encouraged and invited to ask questions. Our morning speaker is a most distinguished trans-Atlantic visitor who suffered the indignities inflicted on many airline travelers at the hands of Northwest Airlines and its associated unions. Roger Needham, who is a pro-vice chancellor of Cambridge University, was born in 1935 and has been in computing at Cambridge since 1956. His Ph.D. thesis in 1961 concerned the application of digital computers to problems of classification and grouping. In 1962, he joined the computer laboratory, which was then called the mathematical laboratory, and has been on the faculty since 1963. He took a leading role in Cambridge projects in operating systems, in time-sharing systems, in memory protection, in local area networks and in distributed systems over the next twenty years.
    [Show full text]