Calculation Methods of Solution Chemical Potential and Application in Emulsion Microencapsulation

Total Page:16

File Type:pdf, Size:1020Kb

Calculation Methods of Solution Chemical Potential and Application in Emulsion Microencapsulation molecules Review Calculation Methods of Solution Chemical Potential and Application in Emulsion Microencapsulation Binkai Xu 1, Xiangdong Liu 2 and Bo Zhou 1,* 1 Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; [email protected] 2 College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China; [email protected] * Correspondence: [email protected] Abstract: Several new biased sampling methods were summarized for solution chemical potential calculation methods in the field of emulsion microencapsulation. The principles, features, and calcu- lation efficiencies of various biased Widom insertion sampling methods were introduced, including volume detection bias, simulation ensemble bias, and particle insertion bias. The proper matches between various types of solution in emulsion and biased Widom methods were suggested, following detailed analyses on the biased insertion techniques. The volume detection bias methods effectively improved the accuracy of the data and the calculation efficiency by inserting detection particles and were suggested to be used for the calculation of solvent chemical potential for the homogeneous aqueous phase of the emulsion. The chemical potential of water, argon, and fluorobenzene (a typical solvent of the oil phase in double emulsion) was calculated by a new, optimized volume detection bias proposed by this work. The recently developed Well-Tempered(WT)-Metadynamics method skillfully constructed low-density regions for particle insertion and dynamically adjusted the system Citation: Xu, B.; Liu, X.; Zhou, B. configuration according to the potential energy around the detection point, and hence, could be used Calculation Methods of Solution for the oil-polymer mixtures of microencapsulation emulsion. For the macromolecule solutes in the Chemical Potential and Application oil or aqueous phase of the emulsion, the particle insertion bias could be applied to greatly increase in Emulsion Microencapsulation. the success rate of Widom insertions. Readers were expected to choose appropriate biased Widom Molecules 2021, 26, 2991. https:// methods to carry out their calculations on chemical potential, fugacity, and solubility of solutions doi.org/10.3390/molecules26102991 based on the system molecular properties, inspired by this paper. Academic Editor: Erich A. Müller Keywords: emulsion microencapsulation; molecular simulation; chemical potential; Widom inser- tion; Metadynamics Received: 22 March 2021 Accepted: 12 May 2021 Published: 18 May 2021 1. Introduction Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in Emulsion microencapsulation is a technique to prepare hollow polymer microspheres published maps and institutional affil- with W1/O/W2 double emulsion. The emulsion is generated by dispersing the oil phase iations. (O phase), which contains polymer macromolecules, and wraps the inner water phase (W1 phase) over the outer water phase (W2 phase). Hollow polymer microspheres can be obtained by curing the emulsion and removing the O phase solvent and the W1 phase. Hollow polymer microspheres are important polymer materials with an internal cavity, Copyright: © 2021 by the authors. which can encapsulate various types of matter. An illustration of the W/O/W structure Licensee MDPI, Basel, Switzerland. and the hollow sphere preparation process is shown in Figure1a. In the fields of medicine This article is an open access article and biology, Hollow polymer microspheres are widely used to encapsulate drugs to distributed under the terms and achieve long-distance macromolecule delivery and controlled release [1,2]. Due to the high conditions of the Creative Commons refractive index difference between the spherical shell of hollow polymer microspheres Attribution (CC BY) license (https:// and air, the spheres have a strong light-shielding ability and can be used in paint coatings creativecommons.org/licenses/by/ in construction and leather, as well as in the cosmetics and paper industry [1,3,4]. In the 4.0/). Molecules 2021, 26, 2991. https://doi.org/10.3390/molecules26102991 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x FOR PEER REVIEW 2 of 19 Molecules 2021, 26, 2991 2 of 19 energy[1,3,4]. field, In the hollow energy polymer field, microspheres hollow polymer can wrap microspheres phase change materialscan wrap to phase prepare change materials phaseto prepare change microcapsulesphase change [5]. microcapsules [5]. FigureFigure 1. Illustration1. Illustration of (a) of the (a emulsion) the emulsion curing process, curing and process, (b) the typicaland (b O-phase) the typical (polystyrene- O-phase (polystyrene- octaneoctane in fluorobenzene),in fluorobenzene), and W2-phase and W2-phase (NaCl-polyvinyl (NaCl-poly alcoholvinyl in water) alcohol in double in water) emulsion in double for emulsion for microencapsulation.microencapsulation. Our group carried out some research in the field of efficient preparation of double emulsionsOur [6 group–10]. In carried the field out of microfluidics, some research an effective in the microfluidicfield of efficient method preparation based of double onemulsions a simple glass [6–10]. capillary In the assembly field of was microfluidics, proposed to encapsulatean effective solids microfluidic and prepare method based on doublea simple emulsions, glass andcapillary visual experimentsassembly was were performedproposed to to verify encapsulate the effectiveness solids of and the prepare double proposedemulsions, microfluidic and visual device. experiments The results showed were that perfor the devicemed controllablyto verify the encapsulated effectiveness of the pro- solidsposed in eachmicrofluidic double emulsion device. droplet The results produced, showed and the that number the of device encapsulated controllably solid encapsulated cores could be well controlled by adjusting the flow rates of different phases. In order tosolids improve in theeach quality double of theemulsion prepared droplet microspheres, produced, our research and the group number studied of theencapsulated solid solidificationcores could and be evaporation well controlled process by of theadjusting double emulsionthe flow from rates a microscopicof different point. phases. In order to Theimprove dissolution the andquality diffusion of the processes prepared of water microsph moleculeseres, on our the W/Oresearch interface group of thestudied the solidi- doublefication emulsion and evaporation were studied throughprocess molecular of the double dynamics emulsion simulation. from The dissolutiona microscopic point. The and diffusion of droplets were closely related to the chemical potentials in the three dense anddissolution complex phases and diffusion of a double processes emulsion. of As water shown mo in Figurelecules1b, on typical the W/O emulsion interface for of the double microencapsulationemulsion were studied involved through various molecules, molecular where dynamics the O-phase simulation. contained The polymer dissolution and dif- macromoleculesfusion of droplets as solidification were closel materialy related (i.e., polystyrene to the chemical and poly- potentialsα-methyl-styrene), in the three dense and short-chaincomplex alkanesphases as of regulating a double additives, emulsion. and As aromatics shown as in solvent. Figure The 1b, W2-phase typical acted emulsion for micro- asencapsulation the curing environment, involved in whichvarious polyalcohol molecules, molecules where were the surfactant,O-phase andcontained salt ions polymer macro- helped to inhibit the self-diffusion of water. The W1-phase was usually pure water or other fillermolecules that did notas participatesolidification in the material mass transfer (i.e., process polystyrene during emulsion and poly- curing.α-methyl-styrene), short- chainSolution alkanes thermodynamics as regulating theory additives, indicated and that aromatics the chemical as potentials, solvent. mThe, of W2-phase the acted as threethe phasescuring in environment, a double emulsion in werewhich closely polyalcohol related to theirmolecules Henry coefficients, were surfactant, vapor and salt ions pressures,helped fugacities,to inhibit free the energies, self-diffusion and other of parameters, water. The which W1-phase significantly was affected usually the pure water or evaporation and curing processes of the double emulsion and the quality of the final shell other filler that did not participate in the mass transfer process during emulsion curing. Solution thermodynamics theory indicated that the chemical potentials, μ, of the three phases in a double emulsion were closely related to their Henry coefficients, vapor pressures, fugacities, free energies, and other parameters, which significantly affected the evaporation and curing processes of the double emulsion and the quality of the final shell products. The fugacity, f, of a fluid relates with the chemical potential in the form μ = kBT ln f + C, when T is the temperature, kB is the Boltzmann’s constant, and C is a constant related to the reference state of the fluid. The fugacity of a pure substance system is equal to the product of its pressure and fugacity coefficient, while the fugacity of a component Molecules 2021, 26, 2991 3 of 19 products. The fugacity, f, of a fluid relates with the chemical potential in the form m = kBT ln f + C, when T is the temperature, kB is the Boltzmann’s
Recommended publications
  • Development Team
    Paper No: 16 Environmental Chemistry Module: 01 Environmental Concentration Units Development Team Prof. R.K. Kohli Principal Investigator & Prof. V.K. Garg & Prof. Ashok Dhawan Co- Principal Investigator Central University of Punjab, Bathinda Prof. K.S. Gupta Paper Coordinator University of Rajasthan, Jaipur Prof. K.S. Gupta Content Writer University of Rajasthan, Jaipur Content Reviewer Dr. V.K. Garg Central University of Punjab, Bathinda Anchor Institute Central University of Punjab 1 Environmental Chemistry Environmental Environmental Concentration Units Sciences Description of Module Subject Name Environmental Sciences Paper Name Environmental Chemistry Module Name/Title Environmental Concentration Units Module Id EVS/EC-XVI/01 Pre-requisites A basic knowledge of concentration units 1. To define exponents, prefixes and symbols based on SI units 2. To define molarity and molality 3. To define number density and mixing ratio 4. To define parts –per notation by volume Objectives 5. To define parts-per notation by mass by mass 6. To define mass by volume unit for trace gases in air 7. To define mass by volume unit for aqueous media 8. To convert one unit into another Keywords Environmental concentrations, parts- per notations, ppm, ppb, ppt, partial pressure 2 Environmental Chemistry Environmental Environmental Concentration Units Sciences Module 1: Environmental Concentration Units Contents 1. Introduction 2. Exponents 3. Environmental Concentration Units 4. Molarity, mol/L 5. Molality, mol/kg 6. Number Density (n) 7. Mixing Ratio 8. Parts-Per Notation by Volume 9. ppmv, ppbv and pptv 10. Parts-Per Notation by Mass by Mass. 11. Mass by Volume Unit for Trace Gases in Air: Microgram per Cubic Meter, µg/m3 12.
    [Show full text]
  • Supplement Of
    Supplement of Effects of Liquid–Liquid Phase Separation and Relative Humidity on the Heterogeneous OH Oxidation of Inorganic-Organic Aerosols: Insights from Methylglutaric Acid/Ammonium Sulfate Particles Hoi Ki Lam1, Rongshuang Xu1, Jack Choczynski2, James F. Davies2, Dongwan Ham3, Mijung Song3, Andreas Zuend4, Wentao Li5, Ying-Lung Steve Tse5, Man Nin Chan 1,6 1Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China 2Department of Chemistry, University of California Riverside, Riverside, CA, USA 3Department of Earth and Environmental Sciences, Jeonbuk National University, Jeollabuk-do, Republic of Korea 4Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Québec, Canada 5Departemnt of Chemistry, The Chinese University of Hong Kong, Hong Kong, China’ 6The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China Corresponding author: [email protected] Table S1. Composition, viscosity, diffusion coefficient and mixing time scale of aqueous droplets containing 3-MGA and ammonium sulfate (AS) in an organic- to-inorganic dry mass ratio (OIR) = 1 at different RH predicted by the AIOMFAC-LLE. RH (%) 55 60 65 70 75 80 85 88 Salt-rich phase (Phase α) Mass fraction of 3-MGA 0.00132 0.00372 0.00904 0.0202 / / Mass fraction of AS 0.658 0.616 0.569 0.514 / / Mass fraction of H2O 0.341 0.380 0.422 0.466 / / Organic-rich phase (Phase β) Mass fraction of 3-MGA 0.612 0.596 0.574 0.546 / / Mass fraction of AS 0.218 0.209 0.199 0.190
    [Show full text]
  • Colloidal Suspensions
    Chapter 9 Colloidal suspensions 9.1 Introduction So far we have discussed the motion of one single Brownian particle in a surrounding fluid and eventually in an extaernal potential. There are many practical applications of colloidal suspensions where several interacting Brownian particles are dissolved in a fluid. Colloid science has a long history startying with the observations by Robert Brown in 1828. The colloidal state was identified by Thomas Graham in 1861. In the first decade of last century studies of colloids played a central role in the development of statistical physics. The experiments of Perrin 1910, combined with Einstein's theory of Brownian motion from 1905, not only provided a determination of Avogadro's number but also laid to rest remaining doubts about the molecular composition of matter. An important event in the development of a quantitative description of colloidal systems was the derivation of effective pair potentials of charged colloidal particles. Much subsequent work, largely in the domain of chemistry, dealt with the stability of charged colloids and their aggregation under the influence of van der Waals attractions when the Coulombic repulsion is screened strongly by the addition of electrolyte. Synthetic colloidal spheres were first made in the 1940's. In the last twenty years the availability of several such reasonably well characterised "model" colloidal systems has attracted physicists to the field once more. The study, both theoretical and experimental, of the structure and dynamics of colloidal suspensions is now a vigorous and growing subject which spans chemistry, chemical engineering and physics. A colloidal dispersion is a heterogeneous system in which particles of solid or droplets of liquid are dispersed in a liquid medium.
    [Show full text]
  • Calculation Exercises with Answers and Solutions
    Atmospheric Chemistry and Physics Calculation Exercises Contents Exercise A, chapter 1 - 3 in Jacob …………………………………………………… 2 Exercise B, chapter 4, 6 in Jacob …………………………………………………… 6 Exercise C, chapter 7, 8 in Jacob, OH on aerosols and booklet by Heintzenberg … 11 Exercise D, chapter 9 in Jacob………………………………………………………. 16 Exercise E, chapter 10 in Jacob……………………………………………………… 20 Exercise F, chapter 11 - 13 in Jacob………………………………………………… 24 Answers and solutions …………………………………………………………………. 29 Note that approximately 40% of the written exam deals with calculations. The remainder is about understanding of the theory. Exercises marked with an asterisk (*) are for the most interested students. These exercises are more comprehensive and/or difficult than questions appearing in the written exam. 1 Atmospheric Chemistry and Physics – Exercise A, chap. 1 – 3 Recommended activity before exercise: Try to solve 1:1 – 1:5, 2:1 – 2:2 and 3:1 – 3:2. Summary: Concentration Example Advantage Number density No. molecules/m3, Useful for calculations of reaction kmol/m3 rates in the gas phase Partial pressure Useful measure on the amount of a substance that easily can be converted to mixing ratio Mixing ratio ppmv can mean e.g. Concentration relative to the mole/mole or partial concentration of air molecules. Very pressure/total pressure useful because air is compressible. Ideal gas law: PV = nRT Molar mass: M = m/n Density: ρ = m/V = PM/RT; (from the two equations above) Mixing ratio (vol): Cx = nx/na = Px/Pa ≠ mx/ma Number density: Cvol = nNav/V 26 -1 Avogadro’s
    [Show full text]
  • Alkali Metal Vapor Pressures & Number Densities for Hybrid Spin Exchange Optical Pumping
    Alkali Metal Vapor Pressures & Number Densities for Hybrid Spin Exchange Optical Pumping Jaideep Singh, Peter A. M. Dolph, & William A. Tobias University of Virginia Version 1.95 April 23, 2008 Abstract Vapor pressure curves and number density formulas for the alkali metals are listed and compared from the 1995 CRC, Nesmeyanov, and Killian. Formulas to obtain the temperature, the dimer to monomer density ratio, and the pure vapor ratio given an alkali density are derived. Considerations and formulas for making a prescribed hybrid vapor ratio of alkali to Rb at a prescribed alkali density are presented. Contents 1 Vapor Pressure Curves 2 1.1TheClausius-ClapeyronEquation................................. 2 1.2NumberDensityFormulas...................................... 2 1.3Comparisonwithotherstandardformulas............................. 3 1.4AlkaliDimers............................................. 3 2 Creating Hybrid Mixes 11 2.1Predictingthehybridvaporratio.................................. 11 2.2Findingthedesiredmolefraction.................................. 11 2.3GloveboxMethod........................................... 12 2.4ReactionMethod........................................... 14 1 1 Vapor Pressure Curves 1.1 The Clausius-Clapeyron Equation The saturated vapor pressure above a liquid (solid) is described by the Clausius-Clapeyron equation. It is a consequence of the equality between the chemical potentials of the vapor and liquid (solid). The derivation can be found in any undergraduate text on thermodynamics (e.g. Kittel & Kroemer [1]): Δv · ∂P = L · ∂T/T (1) where P is the pressure, T is the temperature, L is the latent heat of vaporization (sublimation) per particle, and Δv is given by: Vv Vl(s) Δv = vv − vl(s) = − (2) Nv Nl(s) where V is the volume occupied by the particles, N is the number of particles, and the subscripts v & l(s) refer to the vapor & liquid (solid) respectively.
    [Show full text]
  • Receive! Osti
    DOE/MC/30175-5033 (DE96000569) RECEIVE! NOV 2 11995 OSTI Portable Sensor for Hazardous Waste Topical Report October 1993 - September 1994 Dr. Lawrence G. Piper October 1994 Work Performed Under Contract No.: DE-AC21-93MC30175 For U.S. Department of Energy U.S. Department of Energy Office of Environmental Management Office of Fossil Energy Office of Technology Development Morgantown Energy Technology Center Washington, DC Morgantown, West Virginia By Physical Sciences Inc. Andover, Massachusetts IAS DISTRIBUTION DP TMi.Q nnpiiycwr » I !MI IS UTT-n, S\c^ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manu• facturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, 175 Oak Ridge Turnpike, Oak Ridge, TN 37831; prices available at (615) 576-8401. Available to the public from the National Technical Information Service, U.S.
    [Show full text]
  • Enter Or Copy the Title of the Article Here
    This is the author’s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher’s web site or your institution’s library. Kirkwood–Buff integrals for ideal solutions Elizabeth A. Ploetz, Nikolaos Bentenitis, Paul E. Smith. How to cite this manuscript If you make reference to this version of the manuscript, use the following information: Ploetz, E.A., Bentenitis, N., & Smith, P.E. (2010). Kirkwood–Buff integrals for ideal solutions. Retrieved from http://krex.ksu.edu Published Version Information Citation: Ploetz, E.A., Bentenitis, N., & Smith, P.E. (2010). Kirkwood–Buff integrals for ideal solutions. The journal of chemical physics, 132(16), 9. Copyright: © 2010 American Institute of Physics. Digital Object Identifier (DOI): doi:10.1063/1.3398466 Publisher’s Link: http://jcp.aip.org/resource/1/jcpsa6/v132/i16/p164501_s1 This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at http://krex.ksu.edu THE JOURNAL OF CHEMICAL PHYSICS 132, 164501 ͑2010͒ Kirkwood–Buff integrals for ideal solutions ͒ Elizabeth A. Ploetz,1 Nikolaos Bentenitis,2 and Paul E. Smith1,a 1Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA 2Department of Chemistry and Biochemistry, Southwestern University, Georgetown, Texas 78626, USA ͑Received 20 May 2009; accepted 29 March 2010; published online 22 April 2010͒ The Kirkwood–Buff ͑KB͒ theory of solutions is a rigorous theory of solution mixtures which relates the molecular distributions between the solution components to the thermodynamic properties of the mixture. Ideal solutions represent a useful reference for understanding the properties of real solutions.
    [Show full text]
  • Density Lab B Test
    Northern Regional: January 19th, 2019 Density Lab B Test Name(s): _______________________________________________________________________ Team Name: ________________________________________ School Name: ________________________________________ Rank: ___________ Team Number: ___________ Score: ___________ Written Test 1) All of the below are types of densities except (5 points) a) Mass Density b) Number Density c) Area Density d) Volume Density 2) Which of the following exhibits Boyle’s Law? (5 points) a) P1V1= P2V2 b) P1/T1=P2/T2 c) PV= nRT d) V1/T1=V2/T2 3) How many atoms are in 3 moles of a substance? (5 points) 23 a) 24.023*10 atoms​ ​ 24 b) 1.81*10 ​ atoms ​ c) 23 atoms 23 d) 6.02310 atoms​ ​ 4) If the temperature of a container doubled, what would have happened to the pressure of the gas inside the container? (5 points) a) Halved b) Doubled c) Quadrupled d) Nothing 5) What factors affect density? (5 points) a) Pressure b) Temperature c) Both A and B d) None of the above 6) Water is more dense as a solid. (5 points) a) True b) False 7) Pascal is the SI Unit for pressure. (5 points) a) True b) False 8) The acceleration due to gravity on Earth is 9.8 m/s. (5 points) a) True b) False 9) Salt water is more dense than deionized water. (5 points) a) True b) False 10) By Archimedes' principle, the buoyant force is equal to the weight of fluid displaced. (5 points) a) True b) False 11) What is the Archimedes Principle? (5 points) 12) What is the molarity of a solution containing 18.9 grams of RuCl3 in enough water to ​ ​ make 1.00 L of solution?
    [Show full text]
  • Stellar Structure III
    7 – Stellar Structure III introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 Fundamental physical constants a radiation density constant 7.55 × 10-16 J m-3 K-4 c velocity of light 3.00 × 108 m s-1 G gravitational constant 6.67 × 10-11 N m2 kg-2 h Planck’s constant 6.62 × 10-34 J s K Boltzmann’s constant 1.38 × 10-23 J K-1 -31 me mass of electron 9.11 × 10 kg -27 mH mass of hydrogen atom 1.67 × 10 kg 23 -1 NA Avogadro’s number 6.02 × 10 mol σ Stefan Boltzmann constant 5.67 × 10-8 W m-2 K-4 (σ = ac/4) R gas constant (k/mH) 8.26 × 103 J K-1 kg-1 e charge of electron 1.60 × 10-19 C 26 L¤ luminosity of Sun 3.86 × 10 W 30 M¤ mass of Sun 1.99 × 10 kg Teff¤ effective temperature of sun 5780 K 8 R¤ radius of Sun 6.96 × 10 m Parsec (unit of distance) 3.09 × 1016 m introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 2 22 7.1 - The equation of radiative transport We assume for the moment that the condition for convection is not satisfied, and we will derive an expression relating the change in temperature with radius in a star assuming all energy is transported by radiation. Hence we ignore the effects of convection and conduction. The equation of radiative transport with gas conditions is a function of only one coordinate, in this case r.
    [Show full text]
  • The Evolution of Galaxy Number Density
    Draft version October 9, 2016 A Preprint typeset using L TEX style AASTeX6 v. 1.0 THE EVOLUTION OF GALAXY NUMBER DENSITY AT Z < 8 AND ITS IMPLICATIONS Christopher J. Conselice, Aaron Wilkinson, Kenneth Duncan1, Alice Mortlock2 University of Nottingham, School of Physics & Astronomy, Nottingham, NG7 2RD UK 1Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands 2SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ ABSTRACT The evolution of the number density of galaxies in the universe, and thus also the total number of galaxies, is a fundamental question with implications for a host of astrophysical problems including galaxy evolution and cosmology. However there has never been a detailed study of this important measurement, nor a clear path to answer it. To address this we use observed galaxy stellar mass functions up to z ∼ 8 to determine how the number densities of galaxies changes as a function of time and mass limit. We show that the increase in the total number density of galaxies (φT), more massive 6 −1 than M∗ = 10 M⊙ , decreases as φT ∼ t , where t is the age of the universe. We further show 7 that this evolution turns-over and rather increases with time at higher mass lower limits of M∗ > 10 6 M⊙ . By using the M∗ = 10 M⊙ lower limit we further show that the total number of galaxies in the +0.7 12 universe up to z = 8 is 2.0−0.6 × 10 (two trillion), almost a factor of ten higher than would be seen in an all sky survey at Hubble Ultra-Deep Field depth.
    [Show full text]
  • Measurement of Particle Number Density and Volume Fraction in A
    Measurement of Particle Number Density and Volume Fraction in a Fluidized Bed using Shadow Sizing Method Seckin Gokaltun, Ph.D David Roelant, Ph.D Applied Research Center FLORIDA INTERNATIONAL UNIVERSITY Objective y 2006 Roadmap Task D1 & D2: y Detailed CFB data at ~.15m ID y Non-intrusive probes y Generate detailed experimental data to develop a new mathematical analysis procedure for defining cluster formation by utilizing granular temperature. y Measure void fraction y Obtain granular temperature y Demonstrate nonintrusive probe to collect void fraction data Granular Temperature Granular theory Kinetic theory y From the ideal gas law: y Assumptions: y Very large number of PV = NkBT particles (for valid statistical treatment) where kB is the Boltzmann y Distance among particles much larger than molecular constant and the absolute size temperature, thus: y Random particle motion with 2 constant speeds PV = NkBT = Nmvrms / 3 2 y Elastic particle-particle and T = mvrms / 3kB particle-walls collisions (no n loss of energy) v 2 = v 2 y Molecules obey Newton Laws rms ∑ i i =1 is the root-mean-square velocity Granular Temperature y From velocity 1 θ = ()σ 2 + σ 2 + σ 2 3 θ r z 2 2 where: σ z = ()u z − u y uz is particle velocity u is the average particle velocity y From voidage for dilute flows 2 3 θ ∝ ε s y From voidage for dense flows 2 θ ∝1 ε s 6 Glass beads imaged at FIU 2008 Volume Fraction y Solids volume fraction: nV ε = p s Ah y n : the number of particles y Vp : is the volume of single particle y A : the view area y h : the depth of view (Lecuona et al., Meas.
    [Show full text]
  • 1 Atmospheric Sciences 501. Course Notes Autumn 1998. 1. Ideal Gas
    1 Atmospheric Sciences 501. Course Notes Autumn 1998. 1. Ideal Gas Law and Hydrostatics. 1.1 Ideal Gas Law. Basic thermodynamic variables are: Pressure, p (N m-2; 1 N m-2 = 1 pascal (Pa) = 0.01 millibar (mb) = 0.01hectoPascals (hPa). Density, r (kgm-3) Temperature, T (K) . If the energy due to intermolecular forces is small relative to molecular kinetic energy, the ideal gas law is an excellent approximation to the equation of state relating these variables: pRT=r (1.1) R* where R = = gas constant; R* = universal gas constant = 8314J kmol-1 K-1; M = molar M weight (kg/kg-mole) and R = specific gas constant for dry air = 287 J kg-1 K-1. 1.2 Molecules and the ideal gas law, Maxwell's kinetic interpretation. Note that r=nmÃà (1.2) where nà = number density (number of molecules per unit volume m-3), and mà = molecular mass (kg). Also MmA= à (1.3) where A = Avogadro's Number = 6.022x1026 molecules per mole; note that, since SI units are used, moles here are kilogram-moles, not gram-moles. Substituting (1.2) and (1.3) into (1.1): 2 æ R* ö p = ç ÷ nTÃÃ= knT (1.4) è A ø * æ R ö -23 -1 where k = ç ÷ = 1.381x10 J K is Boltzmann's Constant. è A ø Now consider the pressure exerted by molecules of gas on a surface perpendicular to the x- axis in a Cartesian reference frame. This is the force per unit area and is equivalent to the average flux in the x-direction of molecules with x-momentum mvà , mvÃà nv x ()xx× where () represents averaging over molecular velocities.
    [Show full text]