Project-ID: C2012/1-1 ACEMIND

Total Page:16

File Type:pdf, Size:1020Kb

Project-ID: C2012/1-1 ACEMIND C2012/1-1, ACEMIND 30/5/2014 CELTIC-PLUS/EUREKA Smart Connected World Project-ID: C2012/1-1 ACEMIND Deliverable D5.2 Initial Plan for Standardisation Contractual Date of Delivery: 30/05/2014 Actual Date of Delivery: 30/05/2014 Editor(s): Olivier Bouchet Author(s): Olivier Bouchet, Pierre Jaffré, Philippe Christin, Jean-Philippe Javaudin, Fabrice Fontaine, Dimitris Katsianis Work package: WP5 Security: PU Nature: Report Version: 1.0 Total number of pages: 35 Abstract This deliverable defines the standardisation plan for the ACEMIND project. It briefly describes the standardisation landscape in home networking and identifies standardisation groups relevant to the work done in ACEMIND. The standardisation plan describes the capabilities within the ACEMIND project and especially of task 5.2 on standardisation for contributions to standardisation bodies. Several standardisation groups could be identified, that provide good, interesting, and promising opportunities for contributions by ACEMIND that have an impact on the developed standard. Keyword list Standardisation, IEEE, Bodies, Regulatory, Fora Deliverable D5.2 Initial Plan for Standardisation Page 1 (35) C2012/1-1, ACEMIND 30/5/2014 Executive Summary The landscape of organisations that define mechanisms for home networking or that have an influence on the definition of these home networking mechanisms is quite broad. There are several standardisation organisation, industry fora and consortia, as well as regulation authorities involved. Several standardisation groups in different organisations have been identified, that are especially relevant for the work done within the ACEMIND project. Many of them have an impact on ACEMIND, but there is only little change that ACEMIND can influence them substantially for different reasons, such as not enough technical overlap or unaligned timelines. However, several newly created standardisation groups could be identified where the concepts and results of the ACEMIND project can make a difference to these standards. There is at least one such group for HOME Network which is: IEEE 1905 or Hybrid Network There are also several standardisation groups with minor opportunities for contributions by ACEMIND. For instance: AllSeen from AllJoyn The ideas, concepts, and results of ACEMIND will be socialized with relevant partners for standardisation. ACEMIND Task 5.2 on standardisation will support and coordinate the standardisation efforts of ACEMIND. The contributions will be made by ACEMIND partners already active in standardisation. Task 5.2 will continuously monitor the standardisation landscape and will provide information on new standardisation opportunities to the work packages. Task 5.2 will also update the standardisation plan according to the dynamics in the standardisation landscape with respect to home networking. ACEMIND partners active in standardisation are mainly industry partners: Orange and Devolo. Contributions to standardisation bodies as well as ACEMIND documents in support of ACEMINDs standardisation activities will be documented. This document will be regularly updated. The next major update is due in month 18. The final version will be available on month 36. Impact on the other Work-packages The results of this deliverable impact different work packages of the ACEMIND project: • In the WP3, the tasks 3.1 and 3.2, focused on the monitoring and management interface, can be enriched by the obtained results in this analysis, in particular with the adjustments regarding the definition of the offered services in the demo. • Likewise, in the WP4, the task 4.1 is focused on the definition of Acemind final demonstrations. Thanks to the results coming from this analysis, the task can orientate the demonstration so that they are closer to the International Standards. • Likewise, Dissemination process of the project will be impacted from this deliverable (publications activities) Deliverable D5.2 Initial Plan for Standardisation Page 2 (35) C2012/1-1, ACEMIND 30/5/2014 List of Authors First name Last name Beneficiary Email address Olivier Bouchet Orange Labs [email protected] Fabrice Fontaine Orange Labs [email protected] Jean-Philippe Javaudin Orange Labs [email protected] Philippe Christin Orange Labs [email protected] Pierre Jaffre Orange Labs [email protected] Dimitris Varoutas UoA [email protected] Dimitris Katsianis UoA [email protected] Document History First name Last name Version Comments Olivier Bouchet 0.1 Creation Pierre Jaffré 0.2 Add information concerning Fora Dimitris Katsianis 1 Final Version Deliverable D5.2 Initial Plan for Standardisation Page 3 (35) C2012/1-1, ACEMIND 30/5/2014 List of Acronyms Acronym Meaning <Advanced Convergent and Easily Manageable Innovative Networks <ACEMIND> Design> AC alternating current ACK acknowledgement ADSL asymmetric digital subscriber line ANSI American National Standards Institute AODV Ad hoc On-demand Distance Vector AP access point AT access and terminals; analogue & digital terminals ATTM access, terminals, transmission, and multiplexing AV audio-visual; audio/video AVB audio video bridging BLE BlueTooth Low Energy BPSK binary phase shift keying BSS basic service set CaON Converged and Optical Networks CAT category CATV cable television CDMA Code Division Multiple Access CE consumer electronics CENELEC European Committee for Electrotechnical Standardization (Comité Européen de Normalisation Electrotechnique) CEPT European Conference of Postal and Telecommunications Administrations CERP European Committee for Postal Regulation CISPR International Special Committee on Radio Interference (Comité Internationale Spécial des Perturbations Radioelectrotechnique) CO confidential CPE customer premises equipment CSMA carrier sense multiple access CSMA/CA carrier sense multiple access collision avoidance CSMA/CD carrier sense multiple access collision detection CWMP CPE WAN Management Protocol DAA detect and avoid Deliverable D5.2 Initial Plan for Standardisation Page 4 (35) C2012/1-1, ACEMIND 30/5/2014 DCF distributed coordination function DHS Digital Home Standard DLNA Digital Living Network Alliance DSL Digital Subscriber Line DVB digital video broadcasting EC European Commission ECC Electronic Communications Committee Ecma European Computer Manufacturers Association EDCA enhanced distributed channel access EMC electromagnetic compatibility EN European norm ERM Electromagnetic Compatibility and Radio Spectrum Matters ET Engineering and Technology ETSI European Telecommunications Standards Institute BRAN Broadband Radio Access Networks EU European Union FCC Federal Communications Commission Gbps Gigabit per second GHz Gigahertz HD high definition HDTV high definition television HGI Home Gateway Initiative HILI High Level Interface HIP Host Identity Protocol hn home networking hnta home networking terminal adapter HPAV HomePlug AV HSI high speed interface HW hardware HWMP Hybrid Wireless Mesh Protocol ICT information and communications technologies ID identifier IEC International Electrotechnical Commission IEEE Institute of Electrical and Electronics Engineers IEEE-SA IEEE Standards Association Deliverable D5.2 Initial Plan for Standardisation Page 5 (35) C2012/1-1, ACEMIND 30/5/2014 IETF Internet Engineering Task Force IP Internet Protocol IPTV internet protocol television IR infrared IrDA Infrared Data Association ISM industrial, scientific, and medical ISO International Organization for Standardization IT information technology ITE information technology equipment ITU International Telecommunication Union ITU-R International Telecommunication Union - Radiocommunication Sector ITU-T International Telecommunication Union - Telecommunication Standardization Sector JEITA Japan Electronics and Information Technology Industries Association JTC joint technical committee L3MP Layer 3 Mobility Prediction LAN local area network LDPC low density parity check LiFi Light Fidelity LLC Logical Link Control MAC media access control MAN metropolitan area network MAP mesh access point Mbps Megabit per second MHz Megahertz MIB management information base MICS media independent command service MIES media independent event service MIH media independent handover MIIS media independent information service MIMO multiple input multiple output MIP Mobile IP MIPv4 Mobile Internet Protocol version 4 MIPv6 Mobile Internet Protocol version 6 MP mesh point Deliverable D5.2 Initial Plan for Standardisation Page 6 (35) C2012/1-1, ACEMIND 30/5/2014 NAT network address translation NGN next generation networks OFDM orthogonal frequency division multiplexing ACEMIND Home Gigabit Access PAR project authorization request PC personal computer PHY physical layer PLC powerline communication PLT powerline telecommunications PON passive optical network PT project team Q question, quarter QAM quadrature amplitude modulation QoS quality of service QPSK quadrature phase shift keying R&D research and development RES Radio Equipment and Systems REV revision RF radio frequency RFC request for comments SC single carrier; study committee SDTV standard definition television SG study group SIG special interest group SIP Session Initiation Protocol SME small and medium enterprise SOHO small office / home office Std standard SW software TC technical committee TCP Transport Control Protocol TDMA time division multiple access TG task group TS technical specification TV television Deliverable D5.2 Initial Plan for Standardisation Page 7 (35) C2012/1-1, ACEMIND 30/5/2014 UM usage model
Recommended publications
  • Woo Project Overview
    WoO Approach General Overview WF-IoT 2014 Mihaela Brut, Patrick Gatellier Thales Services, France Ilyoung Chong, Hankuk University of Foreign Studies, Korea 6th Of March 2014 2 / 01: Scientific and Business Context Scientific and Business Context 3 / Context – IoT and WoT gather more and more devices IoT boom: u Since 2007: more devices than people are connected to Internet (Cisco IoT IBSG, 2011) u In 2020: 50 billions devices will be connected to Internet (Ericson, 2010) u In 2020: the global M2M business (large industry, solution providers, connectivity providers) will reach 260 milliards Euros (Machina Research, 2012); u By 2020: IoT will add $1,9 trillion to the global economy (Gartner, 2013) => huge business application development (WoT & Future Internet boom) People connected to Internet resulted in Web 1.0, 2.0, 3.0 … applications What can we imagine about the future of the connected devices? 4 / Context – status of IoT and WoT business Huge deployment of smart devices and sensors, resulting in huge amount of data collected, not exploited in real-time, nor outside a closed system: u Smart metering => filtered data is selected for billing purposes, and various statistic analysis are accomplished £ If a third party (e.g. insurance company) is interested in specific data, no legal framework and no technical support u Smart homes: each equipment is able to switch in secure mode, and to send information or alarm messages, eventually to receive remote control commands £ France: government investment in “sensing” the elder people homes
    [Show full text]
  • Medianet 2015
    konferencia szemle HTE MediaNet 2015 Diákszekció 2015. október konferencia szemle TARTALOM H T E M E DIAN et 2 0 1 5 KO N F E R en CIA | DIÁKSZEKCIÓ EREDMÉNYEK A TÖBBUTAS HÁLÓZATI KOMMUNIKÁCIÓS TECHNOLÓGIÁK TERÜLETÉN 2 Fejes Ferenc, Katona Róbert, Püsök Levente PARAMÉTERBECSLÉS 802.11AD RENDSZEREKBEN 8 Csuka Barna és Kollár Zsolt MODERN TECHNOLÓGIÁKON ALAPULÓ OTTHONI FELÜGYELő RENDSZER 15 Kalmár György, Balázs Péter A GOOGLE ÚJ, KÍSÉRLETI QUIC PROTOKOLLJÁNAK TELJESÍTMÉNYELEMZÉSe 21 Krämer Zsolt, Megyesi Péter, Molnár Sándor INTEGRÁLT TÖMEGFELÜGYELETI RENDSZER OKOS VÁROSOKBAN 29 Nagy Attila Mátyás KÉPOSZTÁLYOZÁS EMBERI ÉS GÉPI TANULÁS ESETÉN 36 Papp Dávid H T E M EDIANet2 0 1 5 KONFERENCIA SZEMLE 1 H T E ME DIAN et 2 0 1 5 KONF E RenC I A DIÁKSZEKCIÓ EREDMÉNYEK A TÖBBUTAS HÁLÓZATI KOmmUNIKÁCIÓS teChnOLÓGIÁK teRÜLetÉN 1 2 használva (vezeték nélküli IEEE 802.11 illetve a vezetékes (Medium Access Control) van jelen, elrejtve az alatta lévo˝ EredményekEredmények a a többutastöbbutas hálózati hálózati kommunikációs kommunikációs IEEE 802.3 Ethernet valamelyik verziója). További lehetoség˝ heterogén hálózatot. Egyetlen EUI-48 MAC címet használ, egy HomePlug [6] kompatibilis (IEEE 1901 Broadband Pow- az erre érkezo˝ és errol˝ elküldött kereteket az AL-ben helyet erline Standard szabványt [7] támogató) eszköz beszerzése, foglaló továbbításért felelos˝ entitás (forwarding entity) képezi technológiáktechnológiák területén területén ezzel már a ház villanyáram hálózatát is használhatjuk adat- le az alárendelt interfészekre. A protokoll képes felderíteni
    [Show full text]
  • Vision of the Smart Home, the Services Concepts That Will Emerge and the Capabilities Needed to Support These Services on a Commercially Viable Basis
    Vision of Smart Home The Role of Mobile in the Home of the Future Contents Foreword Foreword Over the past decade, consumers the These services address consumers desire to manage their home 1 Executive Summary 1 world over have rapidly embraced mobile environment while becoming greener through lower energy telecommunications; connectivity has consumption and greater awareness of their CO2 footprint. The smart 2 Introduction 3 home concept, while it is still in its infancy, is set to become one of the allowed them to stay more and more in 3 Smart Home Vision 5 most significant consumer lifestyle developments of this decade. touch with their friends and colleagues. Smart Home Services 6 The smart home market is forecast to exceed $44bn in five years’ Stages in the Evolution of Smart Home Services 9 Now, the addition of connectivity to home time, bringing with it new opportunities for mobile network 4 Smart Home Landscape 13 appliances and the arrival of new online operators and the rest of the mobile ecosystem. The ubiquity of Supplier Ecosystem 13 energy management tools are creating mobile networks makes them indispensable for connecting smart home devices and Technology and Interoperability Landscape 17 the right environment for a new market in home energy management gateways, just as mobile phones are emerging as the main interface for home energy management applications. Smart Home - Growth Prospects in Vertical Segments 20 smart home services. 5 Smart Home Services and Requirements 25 We recognise, however, that the conversion of a home to a “smart” ecosystem is not going to happen without collaboration and cross-industry effort.
    [Show full text]
  • Hypermedia Apis for Sensor Data: a Pragmatic Approach to the Web of Things
    Hypermedia APIs for Sensor Data: A pragmatic approach to the Web of Things The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Russell, Spencer, and Joseph Paradiso. “Hypermedia APIs for Sensor Data: A Pragmatic Approach to the Web of Things.” Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (2014). As Published http://dx.doi.org/10.4108/icst.mobiquitous.2014.258072 Publisher European Union Digital Library/ICST Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/103763 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Hypermedia APIs for Sensor Data A pragmatic approach to the Web of Things Spencer Russell Joseph A. Paradiso [email protected] [email protected] Responsive Environments Group MIT Media Lab Massachusetts Institute of Technology Cambridge, MA, USA ABSTRACT dards and protocols such as AllJoyn1 and MQTT2, other As our world becomes more instrumented, sensors are ap- projects [20] seek to use existing application-level Web stan- pearing in our homes, cars, and on our bodies [12]. These dards such as HTTP to provide an interface that is more sensors are connected to a diverse set of systems and pro- familiar to developers, and also that can take advantage of tocols driven by cost, power, bandwidth, and more. De- tooling and infrastructure already in place for the World spite this heterogeneous infrastructure, we need to be able Wide Web. These efforts are often dubbed the Web of to build applications that use that data, and the most value Things, which reflects the relationships to existing Web stan- comes from integrating these disparate sources together.
    [Show full text]
  • Review of Communication Technologies for Smart Homes/Building Applications
    Accepted for presentation at the 2015 IEEE Innovative Smart Grid Technologies Conference (ISGT-ASIA). Bangkok, Thailand. November 4-6, 2015. 1 Review of Communication Technologies for Smart Homes/Building Applications M. Kuzlu, Senior Member, IEEE, M. Pipattanasomporn, Senior Member, IEEE, and S. Rahman, Fellow, IEEE 1Virginia Tech – Advanced Research Institute, Arlington, VA 22203 [email protected], [email protected] and [email protected] frequency. Therefore, communication requirements for CPN Abstract— A customer premises network (CPN) is a critical applications are typically low power consumption, low cost, element to support messaging exchange among smart meters, an simplicity, and secure communications. energy management unit, load controllers, smart appliances and Typical smart grid applications in a CPN, such as HEM, electric vehicles in a smart home/building environment. Smart metering, demand response, etc., are discussed in [3, 4, 5]. In grid applications in a CPN generally are driven by the need for [6], authors propose a comprehensive assessment of various Home/Building Energy Management Systems (HEM/BEM). communication technologies for CPNs and develop an Design of an effective energy management system requires the approach for selecting suitable technologies for demand selection of a proper communication technology. The objective of response applications. A contemporary look at the current state this paper is to compare commonly used wired and wireless of the art in smart grid communications and networking communication technologies for smart grid applications in a premises area network in terms of their standard/protocol, technologies as well as assess their suitability for deployment maximum data rate, coverage range, and adaptation rate. These to serve various smart grid applications are discussed in [7, 8].
    [Show full text]
  • C:\Working Papers\11156.Wpd
    NBER WORKING PAPER SERIES THE RULES OF STANDARD SETTING ORGANIZATIONS: AN EMPIRICAL ANALYSIS Benjamin Chiao Josh Lerner Jean Tirole Working Paper 11156 http://www.nber.org/papers/w11156 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 February 2005 Harvard Business School and the National Science Foundation provided financial support. We thank seminar participants at the Federal Reserve Bank of Chicago/Kellogg “Standards and Public Policy” conference, Melbourne Business School, and the IDEI Conference on the Economics of the Internet and Software Industries for helpful comments, as well as Ken Krechmer, Mark Lemley, and Halla Yang. Research support was provided by Aurora Bryant, Vicky Chang, Seung-ju Paik, Mimi Tam, and Olga Trzebinska. All errors are our own.The views expressed herein are those of the author(s) and do not necessarily reflect the views of the National Bureau of Economic Research. © 2005 by Benjamin Chiao, Josh Lerner, and Jean Tirole. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. The Rules of Standard Setting Organizations: An Empirical Analysis Benjamin Chiao, Josh Lerner, and Jean Tirole NBER Working Paper No. 11156 February 2005 JEL No. L2, O3 ABSTRACT This paper empirically explores the procedures employed by standard-setting organizations. Consistent with Lerner-Tirole (2004), we find (a) a negative relationship between the extent to which an SSO is oriented to technology sponsors and the concession level required of sponsors and (b) a positive correlation between the sponsor-friendliness of the selected SSO and the quality of the standard.
    [Show full text]
  • Americas Smart Homes Market – by Products, Services & Geography
    MarketsandMarkets http://www.marketresearch.com/MarketsandMarkets-v3719/ Publisher Sample Phone: 800.298.5699 (US) or +1.240.747.3093 or +1.240.747.3093 (Int'l) Hours: Monday - Thursday: 5:30am - 6:30pm EST Fridays: 5:30am - 5:30pm EST Email: [email protected] MarketResearch.com AMERICAS SMART HOME MARKET By Products (Security, Access, Lighting, Entertainment, Energy Management, HVAC, and Ballast & Battery Pack), Services (Installation & Repair, Renovation & Customization) & Geography Analysis & Forecasts (2013 – 2020) MarketsandMarkets [email protected] www.marketsandmarkets.com Americas Smart Homes Market – By Products, Services & Geography - Analysis & Forecast (2013 – 2020) MarketsandMarkets is a global market research and consulting company based in the U.S. We publish strategically analyzed market research reports and serve as a business intelligence partner to Fortune 500 companies across the world. MarketsandMarkets also provides multi-client reports, company profiles, databases, and custom research services. MarketsandMarkets covers thirteen industry verticals, including advanced materials, automotive and transportation, banking and financial services, biotechnology, chemicals, consumer goods, energy and power, food and beverages, industrial automation, medical devices, pharmaceuticals, semiconductor and electronics, and telecommunications and IT. Copyright © 2013 MarketsandMarkets All Rights Reserved. This document contains highly confidential information and is the sole property of MarketsandMarkets. No part of it may be circulated, copied, quoted, or otherwise reproduced without the approval of MarketsandMarkets. MarketsandMarkets Sample Pages | 1 Americas Smart Homes Market – By Products, Services & Geography - Analysis & Forecast (2013 – 2020) 1 INTRODUCTION 1.1 KEY TAKE-AWAY • Americas Smart Homes Market by products, services, and geography market statistics with detailed classifications and splits by revenue. • Analysis of the Americas Smart Homes market by products with a special focus on high growth areas.
    [Show full text]
  • January 2019 Defining Iot…
    IoT: What and Why? January 2019 Defining IoT… The Internet of Things, IoT… Even technology researchers and commentators cannot agree on what it is. The most consistent is Gartner’s definition below. The Internet of Things (IoT) is the network of physical objects that contain embedded technology to communicate and sense or interact with their internal states or the external environment. Gartner. Defining IoT… Other definitions: Thing: An object of our everyday life placed in our everyday environment. A thing can be a car, fridge but can also be abstracted to a complete house or city depending on the use case. Device: A sensor, actuator or tag. Usually the device is part of a thing. The thing processes the devices’ context information and communicates selected information to other things. Furthermore, the thing can pass actions to actuators. What is IoT and Why are we doing this? The ‘What’ is the definitions and technologies. The ‘Why’ is the value and benefits. What is IoT? Technologies enabling connection to traditionally unconnected devices: a) Receiving information from the devices b) Where possible, controlling the device What is IoT and Why are we doing this? Examples of IoT devices that receive information, and respond to controls: • Drinking Water dispensers; • Lighting based on telemetrics; • Heating systems; • Conveyer belt systems; • Driverless vehicles; • Advertising boards. What is IoT and Why are we doing this? Why are we doing this? IoT technology means we can now receive information about things that traditionally was impossible or impractical to achieve. Therefore, the value and benefits are derived from the ‘Information of Things’.
    [Show full text]
  • Authors:M. Emmendorfer, S. Shupe, D. Cummings, T. Cloonancontributors:Z. Maricevic, M. Schemmann, B. Dawson, V. Mutalik, J.Howe, A
    NEXT GENERATION - CABLE ACCESS NETWORK AN EXAMINATION OF THE DRIVERS, NETWORK OPTIONS, AND MIGRATION STRATEGIES FOR THE ALL-IP NEXT GENERATION – CABLE ACCESS NETWORK Authors:M. Emmendorfer, S. Shupe, D. Cummings, T. CloonanContributors:Z. Maricevic, M. Schemmann, B. Dawson, V. Mutalik, J.Howe, A. Al-Banna,and F. O'Keeffe ARRIS ABSTRACT to rise at an alarming rate. Cable Operators like the United Kingdom's Virgin The Cable Industry is facing a Mediaannounced in April 2011 an Internet decade of unprecedented change in the areas speed trial of up to 1.5 Gbps downstream of video and high-speed Internet services. and 150 Mbps upstream [1].The cable This change,driven by competition and competitor Verizonis reportedly exploring consumer demand, will transform the cable plans to upgrade its FiOS system to XG- network end-to-end. This paper will focus PON, the 10 Gbps downstream and 2.5 entirely on what we are calling the Next Gbps upstream technology [2]. New Generation Cable Access entrants in the video distribution space are Network,examining the business drivers, capitalizing on the network investments network options, and migrations strategies in made by the telecom industry, forcing the access layer of the data and HFC changes in their video delivery network as network to provide more IP-based capacity well as the high-speed data network. A key to and from the home. The document covers challenge the cable industry will face in the in-depth the core business drivers and the future will be offering PON-like IP-based technical options spanning animmense area capacity in the downstream and the of network disciplines and technologies, upstream to consumers, while leveraging thus we have included a comprehensive their existing coaxial network.
    [Show full text]
  • Communication Platforms for Industrial and Residential Gateways (I) Outline
    Communication platforms for industrial and residential gateways (I) Prof. Dr. Ralf E.D. Seepold Departamento de Ingeniería Telemática Universidad Carlos III de Madrid [email protected] Outline Home and industrial Networking z Powerline z Phoneline z Wireless z Others Service platforms Ralf E.D. Seepold 2 1 Home Automation: A definition The automatic operation or control of equipment, a process, or a system without conscious thought. [Fow78] [Fow78] Fowler, F.G. and Fowler. H.W., Oxford Concise Dictionary, 6th ed, Clarendon Press, Oxford,1978. Ralf E.D. Seepold 3 Smart Home: A definition Home or building [Red01] Usually a new one Equipped with structured wiring Enable remote control or programme an array of electronic devices via commands [Red01] Vendela Redriksson, “Smart home or building”, http://whatis.techtarget.com, 2001. Ralf E.D. Seepold 4 2 Application areas Communication Entertainment Security Convenience Information systems Etc. Ralf E.D. Seepold 5 Smart Home: Applications Examples z Phone to arm home security z Control temperature z Switch appliances on/off z Control lightning z Program home theatre/entertainment system z … and many more Ralf E.D. Seepold 6 3 Push for Home Networking Rapid growth in multiple-PC household penetration z PC penetration exceeds 50% in US households z Multi-PC/household growth (U.S.): 15M (1998) to 26M (2003) * Increasing Internet usage z Nearly 90% of PC households will be online by 2001 z Internet usage growth (U.S.): 20% (1997) to 47% (2001) ** Broadband Internet access z Broadband penetration growth (U.S.): less than 1M (1998) to more than 15M (2002) *** z % Penetration of online households (U.S.): increases from 2% (1998) to 26% (2002) *** * - Dataquest, ** - Yankee Group, *** - Forrester Research Ralf E.D.
    [Show full text]
  • Smart Homes and the New White Futurism
    Journal of Futures Studies 2021,Vol. 25(4) 45–56 DOI: 10.6531/JFS.202106_25(4).0004 Article Smart Homes and the New White Futurism Adam Richard Rottinghaus1,* 1Assistant Professor of Media, Journalism & Film, Miami University, Williams Hall, 208, 350 Oak Ave., Oxford, OH, 45056, USA Abstract This article explores the consumer technology industry’s discourse about emerging Internet of Things smart home devices and sketches an outline of a “new white futurism.” New white futurism displaces prior consumer fantasies of labor-free living in smart homes and frames emerging smart home devices as tools for data-driven management of work/life balance in contemporary heteronormative, white, middle-class culture. The research draws on existing scholarly literature, archival documents, contemporary marketing discourses, and participant observation at CES in 2014 and 2018. The article concludes that it is crucial to reimagine cultural relationships to emerging technologies through Afro, Indigenous, and queer futuristic thought. Keywords Smart Homes, Emerging Technologies, Internet of Things, Futurism, Labor, Corporate Power This article explores the consumer technology industry’s discourse about emerging smart home devices and begins sketching the outlines of a “new white futurism.” New white futurism is a discourse from companies that promotes emerging smart home technologies as tools for data-driven management of work/life balance in contemporary heteronormative, white, middle-class culture. Since 2008 the consumer technology industry has increasingly focused on the Internet of Things (IoT) and connected smart homes as the dominant retail application. IoT smart home devices have precipitated a shift away from promoting imaginative technological futures that bring about changes in labor or culture in everyday life toward one of logistics and management that reproduce the status quo.
    [Show full text]
  • Better Life with Smart Media & Things
    Better Life with Smart media & things Innopia Technologies Inc. Why Smart Media Gateway for IoT Service? 1 Interactive media consumption with IoT devices 2 More effective information on TV interface 3 Always connected gateway at living room AllSeen Alliance Ecosystem LG AT&T Panasonic Microsoft Vodafone Technicolor Qualcomm Century Link Philips ADT Sony LGU+ Canon Haier Solution Service Operators CE Manufacturer Why Innopia for AllJoyn Solution? Specialty of Embedded Design House SW for Linux & Android experiences with platform various SoC Guaranteed Inter- Make media as one of operability with strong IoT smart home service expertise in HW & SW Innopia Advantages Innopia AllJoyn enabled product roadmap 1. AllJoyn 3. AllJoyn notification, 5. AllJoyn support Wi-Fi notification enabled control panel enabled Smart radar tracer for Smart TV wireless TV the multiple movement enablement stick streaming projector and presence monitoring MP CS CS Dev. Plan. 2. Smart home package 4. Multi-protocol including Wi-Fi power support smart media plug, Wi-Fi LED bulb and GW based on own GW stick based on AllJoyn bridge system AllJoyn framework for for AllJoyn control panel home automation, energy management with media entertainment Now Launching Launching Launching Launching available Q3, 2015 Q3, 2015 Q4, 2015 Q2, 2016 Smart Home Starter Package Wi-Fi Smart LED MagicCast Wi-Fi Smart Light Bulb - AllJoyn Gateway Power Plug Smart Media Service Use Cases 1 Interactive game with LED bulb 2 Home theater experience from media mode Smart Media Service Use Cases
    [Show full text]