Authors:M. Emmendorfer, S. Shupe, D. Cummings, T. Cloonancontributors:Z. Maricevic, M. Schemmann, B. Dawson, V. Mutalik, J.Howe, A

Total Page:16

File Type:pdf, Size:1020Kb

Authors:M. Emmendorfer, S. Shupe, D. Cummings, T. Cloonancontributors:Z. Maricevic, M. Schemmann, B. Dawson, V. Mutalik, J.Howe, A NEXT GENERATION - CABLE ACCESS NETWORK AN EXAMINATION OF THE DRIVERS, NETWORK OPTIONS, AND MIGRATION STRATEGIES FOR THE ALL-IP NEXT GENERATION – CABLE ACCESS NETWORK Authors:M. Emmendorfer, S. Shupe, D. Cummings, T. CloonanContributors:Z. Maricevic, M. Schemmann, B. Dawson, V. Mutalik, J.Howe, A. Al-Banna,and F. O'Keeffe ARRIS ABSTRACT to rise at an alarming rate. Cable Operators like the United Kingdom's Virgin The Cable Industry is facing a Mediaannounced in April 2011 an Internet decade of unprecedented change in the areas speed trial of up to 1.5 Gbps downstream of video and high-speed Internet services. and 150 Mbps upstream [1].The cable This change,driven by competition and competitor Verizonis reportedly exploring consumer demand, will transform the cable plans to upgrade its FiOS system to XG- network end-to-end. This paper will focus PON, the 10 Gbps downstream and 2.5 entirely on what we are calling the Next Gbps upstream technology [2]. New Generation Cable Access entrants in the video distribution space are Network,examining the business drivers, capitalizing on the network investments network options, and migrations strategies in made by the telecom industry, forcing the access layer of the data and HFC changes in their video delivery network as network to provide more IP-based capacity well as the high-speed data network. A key to and from the home. The document covers challenge the cable industry will face in the in-depth the core business drivers and the future will be offering PON-like IP-based technical options spanning animmense area capacity in the downstream and the of network disciplines and technologies, upstream to consumers, while leveraging thus we have included a comprehensive their existing coaxial network. executive summary at the conclusion of the report. Some of the most often asked questions by cable industry forward-looking The analysis includes the allocation planners reflect the key challenges the of existing spectrum and possible future industry is facing for this decade and spectrum expansion to accommodate beyond. Some of these challenges and consumer demand. Cable Operators and questions include: 1) How long willthe their competitors are enabling consumers to current spectrum split and 500 HHP change their viewingoptions for video nodelast? 2) What are the network services and the usage of the high-speed technology and architecture options and Internet network.In the area of high-speed what are the pros and cons? 3) How long Internet service, competition and consumer will each of these new network architecture demand is increasing the service speed tiers options last? 4) What are the financial offered,and network traffic usage continues impacts of the options?5) What are the best each network architecture and technology, ways to leverage previous, current and so industry leaders may make an informed future investment? decision.These topics under consideration comprise several network technology This paper will seek to provide some disciplines, which are often separate areas of visibility and answers to these questions and concentration. This paper is by no means key challenges. The paper will focus conclusive; some of the areas under entirely on the network aggregation and examination have not had significant study access layer including the CMTS, HFC and or have the absence of products to home network. This paper will provide sufficiently examine and forecast the best some predictions for service tier and traffic path.There are also timing considerations growth, which serve as the drivers for and business trade-offs that will need to be network capacity and network utilization considered. forecasts that are used to predict the timing of the network changes and investment. We INTRODUCTION – PLANNING FOR THE NEXT will examine the network technology and GENERATION – CABLE ACCESS NETWORK network architecture options from spectrum A major challenge the cable industry splits, data MAC and PHY technologies as will face in the future will be meeting the well as network architecture options. This needs of the consumer and addressing the paper will consider the capabilities of a drop competitive threats of PON/FTTH systems in upgrade with an effort to maintain a 500 all while leveraging the existing coax to the HHP service group and typical number of home. This will mean significant changes in actives and passivesto determine the the use of network technologies, spectrum viability and impact for upstream spectrum allocation, and overall network architectures. Planning for the Next expansion. The funneling effect must be Generation – Cable Access Network is considered in the analysis for the NG Cable extremely difficult as this spans across Access Network. The paper provides several network disciplines within the cable analysis and comparison of some of the industry and even technologies outside or network elements under consideration. The not widely deployed in cable, such as PON, paper introduces a term called Digital Fiber Wireless, and EoC. The span of network Coax (DFC) as a next generation technology disciplines also reaches into the network elements and underlying sub- architecture, which may augment the HFC systems such as MAC layer, PHY layer, media conversion style architectures that HFC optical transport components, as well utilize centralized data access/aggregation as several access radio frequency layer equipment. technologies end-to-end such as amplifiers, passives, and coaxial cable. What is proving We considered a couple of migration to be a significant challenge is the increase strategies as more viable than others and dependency between all of these while not picking a particular end-state traditionally separate network disciplines as approach, our position is to examine the part of the new cable access network architecture. In years past these options and document the pros and cons of technologies functioned in many ways independent of one another. This next Flexibility to accommodate generation cable access architecture will incremental allocation of likely migrate to more IP based spectrum in IP/Bandwidth for smooth transition the downstream cannibalizing existing strategy and pay as you grow or just technologies which are non-IP based in time network planning creating a more efficient and competitive DOCSIS Backwards Compatibility network transport platform to compete with leverages MAC/PHY channel PON on the downstream and simply have bonding groups previously deployed the versatility of IP based technology. The and occupying spectrum yielding upstream will need more spectrum and it is investment protection delaying or the overall spectrum allocation and avoiding significantly costly placement of this new spectrum, whichwill approaches to find new spectrum have the greatest impact on the cable Investment protection by re-using industry for decades to come. spectrum already in service, DOCSIS, HE lasers/receivers, and The challenge we have is predicting CPE (STB/Data) as much as possible the timing of the change in the network and Leverage network passives the most how long each change will last. numerous OSP element Additionally and most importantly what are Avoid costly and unnecessary fiber the impacts of each of the upstream builds spectrum options that may be considered for Keep the OSP as Simple as Possible the future. This paper will provide for as Long as Possible predictions, such as the drivers for the use of Leverage High densities and the spectrum in the downstream and economies of scale upstream. The paper considers the spectrum allocation options and predicts how long Importance of Backward Compatibility each will last beginning with the current with DOCSIS 3.0 and Any Successor sub-split options and several spectrum splits which add new upstream capacity and how The authors of this paper believe that long these will last. The report provides a DOCSIS and any successor should consider technical comparison of the upstream the value of backwards compatibility spectrum options and the impacts that each has from services to overall network especially across channel bonding groups. architecture and cost. This assures previous and future investment may be applied to create a large IP based Our Goals for Next Generation – Cable bandwidthnetwork while not stranding Access Network include: previous capital investment and spectrum. Achieve upstream bandwidth The use of channel bonding leverages every requirements through this decade MHz, which are finite and not free, this is all Achieve downstream bandwidth towardsan effort to create one large IP pipe requirements through this decade to and from the home. The use of Continued versatility to backwards compatibility has benefitted the accommodate advances in cable industry as well as other industries networking technology without which use technologies like IEEE Ethernet, massive changes to the outside plant WiFi, and EPON creating consumer network. investment protection, savings,and a smooth and most importantly the spectrum migration strategy. The adoption of allocation options to forecast network backward compatibility simply allows the capacity. Then after considering the Service MSOs to delay and perhaps avoid major and Traffic growth we measured this against investment to the network such as adding the network capacity options, in the section more data equipment, spectrum, node splits, referred to as Network Utilization and or running fiber deeper. Capacity Planning. In this section we forecast the timing and duration of each Overview of Our Methodology For network step. In step four we examine Network and Capacity Planning several of the network technology and In our analysis and in the structure of architecture options under consideration. this paper we have examined the Next The Network Migration Analysis and Generation-Cable Access Network in Strategies consider all of the factors of the several steps as captured in the illustration aforementioned steps and provides some below (figure 1). As shown in the analysis of possible migrations strategies to illustration our process was to first address the competitive threats and determine the future requirements. The first consumer drivers.
Recommended publications
  • Review of Communication Technologies for Smart Homes/Building Applications
    Accepted for presentation at the 2015 IEEE Innovative Smart Grid Technologies Conference (ISGT-ASIA). Bangkok, Thailand. November 4-6, 2015. 1 Review of Communication Technologies for Smart Homes/Building Applications M. Kuzlu, Senior Member, IEEE, M. Pipattanasomporn, Senior Member, IEEE, and S. Rahman, Fellow, IEEE 1Virginia Tech – Advanced Research Institute, Arlington, VA 22203 [email protected], [email protected] and [email protected] frequency. Therefore, communication requirements for CPN Abstract— A customer premises network (CPN) is a critical applications are typically low power consumption, low cost, element to support messaging exchange among smart meters, an simplicity, and secure communications. energy management unit, load controllers, smart appliances and Typical smart grid applications in a CPN, such as HEM, electric vehicles in a smart home/building environment. Smart metering, demand response, etc., are discussed in [3, 4, 5]. In grid applications in a CPN generally are driven by the need for [6], authors propose a comprehensive assessment of various Home/Building Energy Management Systems (HEM/BEM). communication technologies for CPNs and develop an Design of an effective energy management system requires the approach for selecting suitable technologies for demand selection of a proper communication technology. The objective of response applications. A contemporary look at the current state this paper is to compare commonly used wired and wireless of the art in smart grid communications and networking communication technologies for smart grid applications in a premises area network in terms of their standard/protocol, technologies as well as assess their suitability for deployment maximum data rate, coverage range, and adaptation rate. These to serve various smart grid applications are discussed in [7, 8].
    [Show full text]
  • C:\Working Papers\11156.Wpd
    NBER WORKING PAPER SERIES THE RULES OF STANDARD SETTING ORGANIZATIONS: AN EMPIRICAL ANALYSIS Benjamin Chiao Josh Lerner Jean Tirole Working Paper 11156 http://www.nber.org/papers/w11156 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 February 2005 Harvard Business School and the National Science Foundation provided financial support. We thank seminar participants at the Federal Reserve Bank of Chicago/Kellogg “Standards and Public Policy” conference, Melbourne Business School, and the IDEI Conference on the Economics of the Internet and Software Industries for helpful comments, as well as Ken Krechmer, Mark Lemley, and Halla Yang. Research support was provided by Aurora Bryant, Vicky Chang, Seung-ju Paik, Mimi Tam, and Olga Trzebinska. All errors are our own.The views expressed herein are those of the author(s) and do not necessarily reflect the views of the National Bureau of Economic Research. © 2005 by Benjamin Chiao, Josh Lerner, and Jean Tirole. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. The Rules of Standard Setting Organizations: An Empirical Analysis Benjamin Chiao, Josh Lerner, and Jean Tirole NBER Working Paper No. 11156 February 2005 JEL No. L2, O3 ABSTRACT This paper empirically explores the procedures employed by standard-setting organizations. Consistent with Lerner-Tirole (2004), we find (a) a negative relationship between the extent to which an SSO is oriented to technology sponsors and the concession level required of sponsors and (b) a positive correlation between the sponsor-friendliness of the selected SSO and the quality of the standard.
    [Show full text]
  • Americas Smart Homes Market – by Products, Services & Geography
    MarketsandMarkets http://www.marketresearch.com/MarketsandMarkets-v3719/ Publisher Sample Phone: 800.298.5699 (US) or +1.240.747.3093 or +1.240.747.3093 (Int'l) Hours: Monday - Thursday: 5:30am - 6:30pm EST Fridays: 5:30am - 5:30pm EST Email: [email protected] MarketResearch.com AMERICAS SMART HOME MARKET By Products (Security, Access, Lighting, Entertainment, Energy Management, HVAC, and Ballast & Battery Pack), Services (Installation & Repair, Renovation & Customization) & Geography Analysis & Forecasts (2013 – 2020) MarketsandMarkets [email protected] www.marketsandmarkets.com Americas Smart Homes Market – By Products, Services & Geography - Analysis & Forecast (2013 – 2020) MarketsandMarkets is a global market research and consulting company based in the U.S. We publish strategically analyzed market research reports and serve as a business intelligence partner to Fortune 500 companies across the world. MarketsandMarkets also provides multi-client reports, company profiles, databases, and custom research services. MarketsandMarkets covers thirteen industry verticals, including advanced materials, automotive and transportation, banking and financial services, biotechnology, chemicals, consumer goods, energy and power, food and beverages, industrial automation, medical devices, pharmaceuticals, semiconductor and electronics, and telecommunications and IT. Copyright © 2013 MarketsandMarkets All Rights Reserved. This document contains highly confidential information and is the sole property of MarketsandMarkets. No part of it may be circulated, copied, quoted, or otherwise reproduced without the approval of MarketsandMarkets. MarketsandMarkets Sample Pages | 1 Americas Smart Homes Market – By Products, Services & Geography - Analysis & Forecast (2013 – 2020) 1 INTRODUCTION 1.1 KEY TAKE-AWAY • Americas Smart Homes Market by products, services, and geography market statistics with detailed classifications and splits by revenue. • Analysis of the Americas Smart Homes market by products with a special focus on high growth areas.
    [Show full text]
  • Communication Platforms for Industrial and Residential Gateways (I) Outline
    Communication platforms for industrial and residential gateways (I) Prof. Dr. Ralf E.D. Seepold Departamento de Ingeniería Telemática Universidad Carlos III de Madrid [email protected] Outline Home and industrial Networking z Powerline z Phoneline z Wireless z Others Service platforms Ralf E.D. Seepold 2 1 Home Automation: A definition The automatic operation or control of equipment, a process, or a system without conscious thought. [Fow78] [Fow78] Fowler, F.G. and Fowler. H.W., Oxford Concise Dictionary, 6th ed, Clarendon Press, Oxford,1978. Ralf E.D. Seepold 3 Smart Home: A definition Home or building [Red01] Usually a new one Equipped with structured wiring Enable remote control or programme an array of electronic devices via commands [Red01] Vendela Redriksson, “Smart home or building”, http://whatis.techtarget.com, 2001. Ralf E.D. Seepold 4 2 Application areas Communication Entertainment Security Convenience Information systems Etc. Ralf E.D. Seepold 5 Smart Home: Applications Examples z Phone to arm home security z Control temperature z Switch appliances on/off z Control lightning z Program home theatre/entertainment system z … and many more Ralf E.D. Seepold 6 3 Push for Home Networking Rapid growth in multiple-PC household penetration z PC penetration exceeds 50% in US households z Multi-PC/household growth (U.S.): 15M (1998) to 26M (2003) * Increasing Internet usage z Nearly 90% of PC households will be online by 2001 z Internet usage growth (U.S.): 20% (1997) to 47% (2001) ** Broadband Internet access z Broadband penetration growth (U.S.): less than 1M (1998) to more than 15M (2002) *** z % Penetration of online households (U.S.): increases from 2% (1998) to 26% (2002) *** * - Dataquest, ** - Yankee Group, *** - Forrester Research Ralf E.D.
    [Show full text]
  • HTS 4Th Edition 2016 Epub Sample.Pages
    How To Smart Home A Step by Step Guide to Your Personal Internet of Things A Key Concept Book by Othmar Kyas 4th Edition How To Smart Home Published by Key Concept Press www.keyconceptpress.com ISBN 978-3-944980-11-9 Fourth Edition July 2016 All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. Copyright © 2016 by KEY CONCEPT PRESS Disclaimer Every effort has been made to make this book as accurate as possible. However, there may be typographical and or content errors. Therefore, this book should serve only as a general guide and not as the ultimate source of subject information. This book contains information that might be dated and is intended only to educate and entertain. The author and publisher shall have no liability or responsibility to any person or entity regarding any loss or damage incurred, or alleged to have incurred, directly or indirectly, by the information contained in this book. References to websites in the book are provided for informational purposes only and do not constitute endorsement of any products or services provided by these websites. Further the provided links are subject to change, expire, or be redirected without any notice. Bonus Material for Download Bonus material for this book can be downloaded from the book website on http:// www.keyconceptpress.com/how-to-smart-home Notification on Updates and New Releases If you want to be notified when an update to this book or a new release from Key Concept Press becomes available sign up here.
    [Show full text]
  • Evolving the Home Router to an Applications Delivery Gateway
    EVOLVING THE HOME ROUTER TO AN APPLICATIONS DELIVERY GATEWAY Joe Trujillo and Chris Kohler Motorola Mobility, Inc Abstract been suppressed, maybe even discouraged. One could say that the focus has been on The home router has become a power brawn - faster speeds - over brains. The house of performance, enabling a dizzying time has come to turn some of that focus number of devices in the home to communicate with each other and the internet towards developing gateway intelligence by at ever growing bandwidth and capacity. way of hosted applications for which the With all this impressive brawn, it is easy to home router is uniquely positioned and overlook the router’s potential for brains. qualified. The home router is an always-on device that WHAT KIND OF APPLICATIONS AND is completely intimate to the physical and WHAT MAKES THE ROUTER logical connectivity between devices on the home network and their connections to the QUALIFIED? internet. That intimacy makes the home router uniquely positioned to host a variety of A home router is not suitable for every kind of applications. application. It has no keyboard, no joystick, no screen nor speakers of its own. Hosting In this paper, the authors discuss some of the games, word processors or corporate payroll applications that can supply a brain to applications makes no sense at all. The best accompany the brawn for next generation routers. Some example applications discussed applications for it to host are those that relate to Machine-to-Machine (M2M) leverage and extend its innate properties. communication for home control and security, Simply put, those key properties are 1) It is Personal Content Management, and always on; 2) It is connected to the internet; 3) Advanced Home Network Management.
    [Show full text]
  • Zigbee™ Alliance Discusses Future of Wireless Networking at CES 2004
    FOR IMMEDIATE RELEASE ZigBee™ Alliance Discusses Future of Wireless Networking at CES 2004 ZigBee Alliance Chairman Bob Heile and Member Companies Discuss how ZigBee Specification will Enable Broad-Based Deployment of Wireless Monitoring, Automation, and Control Network Applications San Ramon, Calif. – January 5, 2004 – The ZigBee Alliance, an association of companies working together to enable reliable, cost-effective, low-power, wirelessly networked, monitoring and control products based on an open global standard, today announced its members will participate in three wireless networking panels at the upcoming CES 2004, January 8-10, 2004, in Las Vegas. The panels feature ZigBee Alliance Chairman Bob Heile speaking on the future of wireless technology and its benefits to consumers. Mr. Heile will also discuss ZigBee's low-cost, low-power, standards-based technology as it relates to other wireless networking standards and how the ZigBee's specification is optimized for use in remote monitoring, control and sensor network applications. “2003 marked a significant year in the growth of the ZigBee Alliance and advancement of the ZigBee specification,” said Heile. “In 2003, our member companies developed a roadmap that will enable timely product introductions into the marketplace and continue to define the qualification standards to ensure interoperability. As we head into 2004, we’re thrilled to be participating in the wireless networking panels at CES, as they offer a great opportunity to kick off our promotional activities and continue educating the industry on the ZigBee technology.” Heile will be participating in three panels at CES 2004: Catch the Buzz on ZigBee: ZigBee Alliance members Motorola and Ember will join Heile to discuss ZigBee’s standards-based technology and how it addresses the unique needs of most remote monitoring and control and sensory network applications.
    [Show full text]
  • HTS 5Th Edition 2017 Final-Sample.Pages
    How To Smart Home A Step by Step Guide for Smart Homes & Building Automation A Key Concept Book by Othmar Kyas 5th Edition How To Smart Home Published by Key Concept Press www.keyconceptpress.com ISBN 978-3-944980-12-6 Fifth Edition May 2017 All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. Copyright © 2017 by KEY CONCEPT PRESS Disclaimer Every effort has been made to make this book as accurate as possible. However, there may be typographical and or content errors. Therefore, this book should serve only as a general guide and not as the ultimate source of subject information. This book contains information that might be dated and is intended only to educate and entertain. The author and publisher shall have no liability or responsibility to any person or entity regarding any loss or damage incurred, or alleged to have incurred, directly or indirectly, by the information contained in this book. References to websites in the book are provided for informational purposes only and do not constitute endorsement of any products or services provided by these websites. Further the provided links are subject to change, expire, or be redirected without any notice. Tutorial Videos and Bonus Material for Download Bonus material for this book can be downloaded from the book website on http:// www.keyconceptpress.com/how-to-smart-home. Tutorial Videos can be viewed on www.keyconceptpress.com/tutorials.
    [Show full text]
  • Home Area Networks
    0 Home Area Networks Ton Koonen COBRA, Eindhoven Univ. of Technology Tutorial OTh1G.1 OFC/NFOEC 2013 Los Angeles, Mar. 21, 2013 ri ate als M D s e m v e COBRA COBRA i t c e s S y s Outline 1 Convergence in home networks, home service scenarios Home wired network architectures, CapEx and OpEx Residential Gateway Optical fiber types High-capacity data transmission for wirebound delivery High-capacity data transmission for wireless delivery Converged networks Standards for POF transmission systems Advanced networking techniques (routing, MGDM, Optical wireless) Evolution trends and roadmap Concluding remarks COBRA Outline 2 Convergence in home networks, home service scenarios Home wired network architectures, CapEx and OpEx Residential Gateway Optical fiber types High-capacity data transmission for wirebound delivery High-capacity data transmission for wireless delivery Converged networks Standards for POF transmission systems Advanced networking techniques (routing, MGDM, Optical wireless) Evolution trends and roadmap Concluding remarks COBRA Connected World 3 fiber Global Network • long reach Metropolitan/ • high capacity Regional Area • fast packet Optical Network switching • variety of ISP Client/Access Cable modem SDH/ media + Networks SONET Networks IP services IP/ATM • mobility Cable TP FTTH FWA cellular • low power • low cost In-home and • personal Personal Triple Play Networks mobile BAN WLAN sensor Home / Enterprise In-/outdoor wireless • end-to-end network management & control COBRA In-home networks vs. Access
    [Show full text]
  • Guia De Configuração E Do Utilizador Copyright
    TG789vac v2 Guia de configuração e do utilizador Copyright Copyright ©1999-2016 Technicolor. Todos os direitos reservados. A distribuição e a cópia deste documento, bem como o uso e a divulgação do seu conteúdo, não são permitidos sem autorização por escrito da Technicolor. O conteúdo deste documento é fornecido apenas para uso informativo e pode estar sujeito a alterações sem aviso prévio e não deve ser interpretado como um compromisso da Technicolor. A Technicolor não é responsável por nenhum erro ou incorre- ção que possa aparecer neste documento. Technicolor 1-5 rue Jeanne d’Arc 92130 Issy-les-Moulineaux France http://www.technicolor.com Marcas comerciais As seguintes marcas comerciais podem ser usadas neste documento: • AllSeen™, AllSeen Alliance™, o logótipo AllSeen Alliance, AllJoyn™, o logótipo AllJoyn e o logótipo Designed for AllSeen são marcas registadas da AllSeen Alliance, Inc. • AutoWAN sensing™ é uma marca registada da Technicolor. • Qeo™ é uma marca registada da Qeo LLC, subsidiária da Technicolor. • Adobe®, o logótipo da Adobe, Acrobat® e Adobe Reader® são marcas comerciais ou marcas comerciais registadas da Adobe Systems, Incorporated, registadas nos Estados Unidos e/ou noutros países. • Apple® e Mac OS® são marcas comerciais registadas da Apple Computer, Incorporated, registadas nos Estados Unidos e noutros países. • A marca e os logótipos Bluetooth® são propriedade da Bluetooth SIG, Inc. • CableLabs® e DOCSIS® são marcas comerciais registadas da CableLabs, Inc. • DECT™ é uma marca comercial da ETSI. • DLNA® é uma marca comercial registada, o logótipo DLNA é uma marca de serviço, e DLNA Certified™ é uma marca registada da Digital Living Network Alliance.
    [Show full text]
  • M2M Protocols, Solutions and Platforms for Smart Home Environments Integrating C.STATUSTM and the Mediasense
    M2M Protocols, Solutions and Platforms for Smart Home Environments Integrating C.STATUSTM and the MediaSense 10/12/2012 MID SWEDEN UNIVERSITY The Department of Information Technology and Media (ITM) Author: Addisu Thomas Lodamo, [email protected] Tutors: Stefan Forsström, Miun,[email protected] Examiner: Prof. Tingting Zhang, [email protected] Medical Monitoring Services Home Security automation Services Services Energy Entertainment Consumption Services services e y t a a W G The Internet M.Sc. Thesis within Computer Engineering AV, 30 Credit Points M2M Protocols, Solutions and Platforms for Smart Home Environments Integrating C.STATUSTM and the MediaSense Addisu Lodamo M2M Protocols, Solutions and Platforms for Smart Home Environments Abstract Addisu Lodamo 2012-11-11 Abstract Digital technological breakthroughs have brought about a huge change in the way the society interacts, responds to the immediate environment and the way that people live. Furthermore, Ubiquitous Computing and dirt cheap sensors have created a new paradigm in digital technology where human beings could control their environment in a different approach. In a number of paradigms of digital technology, multiple proprietary solutions in industry results in a huge cost for the end users to use the technology and thus a very sluggish penetration of the tech- nology into the society. Moreover, such unorganized and vendor ori- ented standards create additional burdens on a person concerned in design and implementation. This thesis presents existing and emerging technologies in relation to smart home environment having an aim to manifest available open standards and platforms. Smart Home Envi- ronment Infrastructures have been presented and discussed.
    [Show full text]
  • A Survey on Smart Home Networking
    A Survey on Smart Home Networking Jin Cheng and Thomas Kunz Department of Systems and Computer Engineering Carleton University Ottawa, Ont., Canada Carleton University, Systems and Computer Engineering, Technical Report SCE-09-10, September 2009 TABLE OF CONTENTS I. Introduction ..................................................................................................................... 4 II. Home appliances control in smart homes ...................................................................... 6 2.1 Generation and storage of renewable energy sources............................................. 6 2.2 Categories of energy usage in residences ............................................................... 9 2.3 Redefinition of the operation mode in a smart home............................................ 10 2.4 Basic configuration and context control of a home control system...................... 13 2.5 Technology independent requirements of utilities in a smart home..................... 15 2.5.1 The framework of Home Area Network.............................................................. 15 2.5.2 The guiding principles targeted for Home Area Network ................................... 16 2.5.3 Functional requirements in Home Area Network................................................ 17 III. Networking patterns and technology for home energy control .................................. 20 3.1 Subdivision of network functionality...................................................................... 20 3.2 Considerations of
    [Show full text]