Note on Mechanical Filtration and Gravitation Filtration (Paper & Discussion)

Total Page:16

File Type:pdf, Size:1020Kb

Note on Mechanical Filtration and Gravitation Filtration (Paper & Discussion) 69 Victorian Institute of Engineers. A FEW NOTES ON MECHANICAL FILTRATION IN CONNECTION WITH WATER SUPPLIES. Read by MR. GEORGE SWINBURNE, 7M August, 1901. In this short paper I make no pretence at originality, but with a view to initiating discussion, will endeavour to give the result of a few enquiries on this important matter in which I have taken a little interest. The system adopted in older countries of filtering through sand beds is not adaptable to Australian conditions in the great majority of cases; yet there is no doubt that something must be done in the near future to better the condition of water supply in the smaller towns of Australia. In the large centres of population, where watershed areas are preserved, a good state of things _ mày exist, but in the country districts, the only available supplies are from doubtful springs, lather stagnant rivers which have already been polluted further up, or dams open to dust storms and all kinds of impurities, which are only filled when it rains in the immediate neighbourhood. It is rarely that the people themselves take much interest in the question, except to grumble when things are very bad. To engineers and sanitary authorities it is one of the most important questions in our modern life. Pure water means good health, but half the population of this continent is content to put up with Typhoid and the ills attending a supply of bad water, rather than help or pay to have the supply placed on the best possible footing. In my opinion this state of things exists on account of the supplies being in the hands of the local authorities or trusts, and the members not realising the importance of the matter. With a municipally-owned concern there are not always the same watch- dog regulations as in the case of a privately owned supply. A private company would have been compelled to put down filters, or use some means to improve the quality of the water which is now put up with by the inhabitants of many towns. Where a supply is owned by a company any excuse that the undertaking was not paying would be treated as being beside the question ; the order would be—" You must give us the best possible water and use every known means to achieve that result regardless of cost." This would be quite right, but why should many Water 70 MECHANICAL FILTRATION Trusts he content to give a poor supply instead of aiming at the best and considering more the health of the town ? They should not be lacking in what would be expected from a privately owned scheme. In the scarcity of perennial brooks and clear pebbly streams it is desirable that something should be done to secure the waters we have from many preventable sources of pollution, and to adopt severer regulations to compel authorities to use available methods of purification, and I trust that our discussion of the subject may tend to supplement the efforts of the Water Supply Department and Public Health Boards in pressing forward the improvements that necessity demands. I am not a chemist or bacteriologist, but, from an engineering point of view, I can see that what has been done in America can be done with advantage here. Mechanical filtration aims to purify large volumes df water with a small body of filtering material, relying on frequent washings to keep the material clean. The washing of the sand or quartz is accomplished by a simple reversal of the current, sometimes accompanied by agitating the purifying material by revolving arms. Instead of scraping the sand at intervals of some weeks, as is the case with ordinary open sand filter beds the filtrant in the mechanical filter is.washed in the filter itself at short intervals. There are, in America, several firms manufacturing mechanical filters, and wherever impure water is reported the filters are vigorously pushed. They are now working in connection with about aoo water supply schemes. Most of the filters are designed to remove suspended matter and colour in cases where these are disagreeable, but are generally supplemented by the use of some chemical, such as alum, which acts as a coagulant and precipitant, and also assists in the efficiency of filtration ; in fact it has been said that there is no mechanical filter made, which, without the use of some coagulant, will more than take out the logs," or remove more than the visible floating or suspended particles of matter in the water. I may say that there are two kinds of mechanical filters made which are classed as Pressure Filters and Gravity Filters. • Being Chairman of the Broken Hill Water Supply, I have taken an interest in the working of the mechanical filters put down in connection with that undertaking, under the supervision of Mr. Thos. Houghton, M.I.C.E. of Sydney, and the resident engineer, Mr. E. A. Whitehead, member of the British Association of Waterworks Engineers. They are known as the " Warren Gravity Filters." Broken Hill is one of the most difficult places in Aus- tralia to supply with water. A town of 30,000 people, and the only means of supply is to catch the water from a watershed about 200 square miles when it rains. The creeks only run after a downpour, and then only for a short time after the rain stops. MECHANICAL FILTRATION. 71 For the last five years the average rainfall per annum has been 5i inches, and as many as 62 months have elapsed without any catchment of water in the reservoir, so that you will see the difficulty the company has in supplying pure water when all that is available is what has been stored under a broiling sun sometimes for many months without any fresh in-take. The mechanical filters at Broken Hill are the only filters, as far as I know, that are used in connection with water supply in Australia, and are estimated to treat 1 million gallons of water per 24 hours. The water to be filtered is pumped from the catchment reservoir through roi miles- of main composed of 14", 16" and 18" pipes, and is received by a cast-iron tank, measuring 33'6" x 37'6' x 8'4" maximum depth. This tank is divided by three timber partitions into four channels, each opening into the next at alternate ends, thus forming a continuous water-way having a length equal to four times that of the tank. As the water enters the tank there is added to it a small quantity of sulphate of alumina, of such strength that it is equivalent to from r grain to 2 grains of alum per gallon of incoming water. The sulphate of alumina is dissolved in filtered water, heated by steam in an open wooden vat 4'6" diameter. From this vat it is run into two lower vats, each 6'o" diameter, where it is diluted and graded to the required strength to suit the quality of water being treated. The strength is determined by means of a urinometer indicating specific gravities from i.o to 1.6. From the lower vats the solution is pumped to a lead-lined storage tank situated above the top level of the receiving tank, and from thence gravitates through a brass pipe to the alum feed box, in which the level of the solution is maintained constant by means of a vulcanite ball-valve Working in the feed box, and driven by a six-bladed propeller placed in the mouth of the rising main, is a vulcanite radial pump—a sort of reversed. Barker's Mill— which picks up the solution and delivers it through a lead down pipe to the in-coming water. As this pump is driven by the in-coming water, it follows that the quantity of solution delivered by it should he always pro- portionate to the quantity of water flowing into the receiving tank. The chief point in the mechanical filtration of public supplies of water is the use of a coagulant or precipitant, the nature of which depends largely upon the composition of the impurities in the water to be treated. As already indicated, the coagulant used at Broken Hill is sulphate of alumina (alum) of 17i% purity, the action of which is described as follows :—When the solution of sulphate of alumina is added to the water it is broken up into sulphuric acid and 72 MECHANICAL FILTRATION. hydrate of alumina, the acid combines with the lime or other salts in the water forming sulphates, while the hydrate of alumina pre- cipitates as a gelatinous mass, carrying down with it much of the solids in suspension and a certain portion of the organic matter. It further assists filtration by partially filling the small in terstices of the upper surfaces of the filter-beds, and thus more quickly bringing them into a state of efficiency. The precipitating action of the alum takes place in the receiving tank, which it is found necessary to clean out at least once in every four weeks. From the receiving tank the water passes to the filters. These are four in number, each 12'6" diameter and g'II" total depth, built up of $" steel plates. The filtrant used is quartz, free from iron and other impurities or colouring matter, and crushed to pass through a sieve having 16o holes per square inch ; any quartz which passes through a sieve having 1600 holes per square inch is rejected. Each filter bed has a depth of 2'2", and is supported upon perforated copper plates fixed on suitable arranged timbers at a height of 18" above the cemented floor of the filter, the space under the copper bottom forming a clear water chamber.
Recommended publications
  • SSB-Filters (PART 4)
    --------- ELECTRONICS --------------------- SSB-FilterS (PART 4) ELECTRONICS This is the fourth article of a tivity and stability characteristics, with mtmaturization of equipment. This is the fourth article of a series from a training course written but their large size makes them Also to the advantage of the me­ series from a training course written by Collins Radio Company for per­ subject to shock or vibration de· chanical filter is a Q in the order by Collins Radio Company for per- sonnel concerned with single side­ terioration. Also, their cost is of 10,000 which is about 100 times sonnel concerned with single side- band communications. quite high. the Q obtainable with electrical band communications. Both SSB transmitters and SSB Newer crystal filters are being elements. Both SSB transmitters and SSB developed that have extended fre­ receivers require very selective receivers require very selective Although the commercial use of bandpass filters in the region of bandpass filters in the region of quency range and are smaller. These mechanical filters is relatively 100 to 500 kilocycles. 100 to 500 kilocycles. newer crystal filters are more ac­ new, the basic principles on which In receivers, a high order of ad- In receivers, a high order of ad­ ceptable for use in SSB equipment. they are based is well established. jacent channel rejection is required jacent channel rejection is required LC Filters The mechanical filter is a me­ if channels are to be closely spaced if channels are to be closely spaced LC filters have been used at IF chanically resonant device that re­ to conserve spectrum space.
    [Show full text]
  • Mechanical Engineering 310 Documentation 2018-2019
    P a g e | 1 X Y L E M MECHANICAL ENGINEERING 310 DOCUMENTATION 2018-2019 Mechanical Engineering Design Group 416 Escondido Mall Stanford University Stanford, CA 94305- 2203 http://me310.stanford.edu Team Xylem: Adit Desai Fay Nicole Colah Okkeun Lee Tin Jing jie Dai Jiang Mika Julin Nina Saarikoski Samuel Moy Timo Moyer 1 Executive Summary This report summarizes the work completed by the Stanford University (SU) and Aalto University (AU) Teams during the 2018-19 Academic Year for ME310 with our corporate sponsor Xylem Inc. In Autumn Quarter 2018, the SU team explored the concept of a modified drip irrigation system designed to reduce the amount of water lost due to evaporation during irrigation, and an oyster based water filtration system which aimed to replicate the mucus in oysters to trap contaminants to purify water. In Winter Quarter 2019, the SU team explored the concept of a human powered personal and floor-based filtration system, which achieved flow rates of up to 80 times faster as compared to gravity fed methods. In Spring Quarter 2019 after the Winter Break in Aalto University, the SU and AU teams converged on a final product design concept and user, which was a low cost, modular and highly maintainable water filtration system which could remove heavy metals, pathogens and sediments from contaminated waters. The filtration system was designed such that clean drinking water could be provided to rural children in developing countries who did not have access to an electrical supply. A key nature-inspired filtration technology of this system was the usage of microalgae (Chlorella Vulgaris) for batch removal of heavy metals, where literature research reported that small quantities of such algae are able to remove significant quantities (~88%) of heavy metals from contaminated waters within 30 minutes.
    [Show full text]
  • Inf 5490 Rf Mems
    INF 5490 RF MEMS LN10: Micromechanical filters Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO 1 Today’s lecture • Properties of mechanical filters • Visualization and working principle • Modeling • Examples • Design procedure • Mixer 2 Mechanical filters • Well-known for several decades – Jmfr. book: ”Mechanical filters in electronics”, R.A. Johnson, 1983 • Miniaturization of mechanical filters makes it more interesting to use – Possible by using micromachining – Motivation Fabrication of small integrated filters: ”system-on-chip” with good filter performance 3 Filter response 4 Several resonators used • One silingle resonathtor has a narrow BP- response – Good for d e fini ng oscill a tor frequency – Not good for BP-filter • BP-filters are implemented by coupling resonators in cascade – Gives a wider pass band than using one single resonating structure – 2 or more micro resonators are used • Each of comb type or c-c beam type (or other types) – Connected by soft springs 5 Filter order • NbNumber o f resonators, n, defines the filter order – Order = 2 * n – Sharper ”roll-off” to stop band when several resonators are used • ”sharper filter” 6 Micromachined filter properties • + CtCompact ilimplemen ttitation – ”on-chip” filter bank possible • + Hig h Q -ftfactor can bbidbe obtained • + Low-loss BP-filters can be implemented – The individual resonators have low loss – Low total ”Insertion loss, IL” • IL: Degraded for small bandwidth • IL: Improved for high Q-factor 7 ”Insertion loss ” IL: Degraded for small
    [Show full text]
  • ETD Template
    DESIGN ISSUES IN ELECTROMECHANICAL FILTERS WITH PIEZOELECTRIC TRANSDUCERS by Michael P. Dmuchoski B.S. in M.E., University of Pittsburgh, 2000 Submitted to the Graduate Faculty of School of Engineering in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2002 UNIVERSITY OF PITTSBURGH SCHOOL OF ENGINEERING This thesis was presented by Michael P. Dmuchoski It was defended on December 11, 2002 and approved by Dr. Jeffrey S. Vipperman, Professor, Mechanical Engineering Department Dr. Marlin H. Mickle, Professor, Electrical Engineering Department Dr. William W. Clark, Professor, Mechanical Engineering Department Thesis Advisor ii ________ ABSTRACT DESIGN ISSUES IN ELECTROMECHANICAL FILTERS WITH PIEZOELECTRIC TRANSDUCERS Michael P. Dmuchoski, MS University of Pittsburgh, 2002 The concept of filtering analog signals was first introduced almost one hundred years ago, and has seen tremendous development since then. The majority of filters consist of electrical circuits, which is practical since the signals themselves are usually electrical, although there has been a great deal of interest in electromechanical filters. Electromechanical filters consist of transducers that convert the electrical signal to mechanical motion, which is then passed through a vibrating mechanical system, and then transduced back into electrical energy at the output. In either type of filter, electrical or electromechanical, the key component is the resonator. This is a two-degree-of-freedom system whose transient response oscillates at its natural frequency. In electrical filters, resonators are typically inductor-capacitor pairs, while in mechanical filters they are spring-mass systems. By coupling the resonators correctly, the desired filter type (such as bandpass, band-reject, etc.) or specific filter characteristics (e.g.
    [Show full text]
  • Design and Simulation of an IF MEMS Filter Based on Face Shear Mode Square Resonator
    International Journal of Smart Grid and Clean Energy Design and Simulation of an IF MEMS Filter Based on Face Shear Mode Square Resonator Junwen Jiang, Jingfu Bao*, Yijia Du School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China Abstract Intermediate frequency (IF) Filters with IC (Integrated circuit) compatibility, narrow bandwidth and large stop band rejection are in need for wireless communications. This paper presents the design and simulation of a 70 MHz IF Micro-electro-mechanical filter using two identical face shear mode square resonators. By carefully designing the supporting structure of the resonators, a quality factor above 100,000 is achieved in the best designed resonator. With these face shear mode square resonators, three filters are designed and the simulated transmission response shows that these filters can obtain unterminated transmission passbands of about 25 kHz to 35 kHz with the centre frequency of 70 MHz, which represents a 0.036% to 0.05% bandwidth. This ultra narrow bandwidth IF bandpass filter can be an attractive candidate for wireless receivers. Keywords: Micro-electro-mechanical system, intermediate frequency filters, square resonator 1. Introduction With the advantage of low power consumption, exceptionally high quality factor, and Integrated circuit (IC) compatibility, MEMS (Micro-electro-mechanical system) resonator and filters have become attractive as frequency generation and selection components for wireless communication systems. Typically for front end transceiver, there exist a number of high-Q off-chip components that limit the development of system on chip (SOC), however, these components are replaceable by MEMS structures and devices. MEMS resonators can be served to construct MEMS oscillators as well as high-Q ultra narrow bandwidth filters, which are attractive in wireless front end receiver to achieve better signal selection.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters Permalink https://escholarship.org/uc/item/3mq7068h Author Barrow, Henry Galahad Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters By Henry Galahad Barrow A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Clark T.-C. Nguyen, Chair Professor Kristofer Pister Professor Liwei Lin Fall 2015 © Copyright 2015 Henry Galahad Barrow All rights reserved Abstract Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters By Henry Galahad Barrow Doctor of Philosophy in Electrical Engineering and Computer Sciences University of California, Berkeley Professor Clark T.-C. Nguyen, Chair There is little question that the commercial success of smartphones has substantially increased the volume of products utilizing Micro Electro Mechanical Systems (MEMS) technology, especially accelerometers, gyroscopes, bandpass filters, and microphones. The Internet of Things (IoT), a more recent driver for small, low power microsystems, seems poised to provide an even bigger market for these and other potential products based on MEMS. Given that the IoT will likely depend heavily on massive sensor networks using nodes for which battery replacement might not be practical, cost and power consumption become even more important. As already known for existing sensor networks, sleep/wake cycles will likely be instrumental to maintaining low sensor node power consumption in the IoT, and if so, then the clocks that must continuously run to synchronize sleep/wake events often become the bottlenecks to ultimate power consumption.
    [Show full text]
  • Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters
    Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters Henry Barrow Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-255 http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-255.html December 18, 2015 Copyright © 2015, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters By Henry Galahad Barrow A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Clark T.-C. Nguyen, Chair Professor Kristofer Pister Professor Liwei Lin Fall 2015 © Copyright 2015 Henry Galahad Barrow All rights reserved Abstract Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters By Henry Galahad Barrow Doctor of Philosophy in Electrical Engineering and Computer Sciences University of California, Berkeley Professor Clark T.-C. Nguyen, Chair There is little question that the commercial success of smartphones has substantially increased the volume of products utilizing Micro Electro Mechanical Systems (MEMS) technology, especially accelerometers, gyroscopes, bandpass filters, and microphones. The Internet of Things (IoT), a more recent driver for small, low power microsystems, seems poised to provide an even bigger market for these and other potential products based on MEMS.
    [Show full text]
  • Glossary of Terms and Acronyms for Vacuum Coating Technology
    Society of Vacuum Coaters Glossary of Terms and Acronyms for Vacuum Coating Technology Abridged with permission from The Foundations of Vacuum Coating Technology by Donald M. Mattox Noyes Publications/William Andrew Publishing (2003) ISBN 0-8155-1495-6 2 Society of Vacuum Coaters Glossary of Terms A Applied bias (PVD technology) An electrical potential applied from an external source. See Bias. Abnormal glow discharge (plasma) The DC glow discharge where Arc A high-current, low-voltage electrical discharge between two the cathode spot covers the whole cathode and an increase in the electrodes or between areas at different potentials. See Arc source. voltage increases the cathode current density. This is the type of Arc, gaseous An arc formed in a chamber containing enough gas- glow discharge used in most plasma processing. See Normal glow eous species to aid in establishing and maintaining an electrical discharge. arc. See Arc, vacuum. Abrasion test (characterization) Testing film adhesion and abrasion Arc, vacuum An arc formed in a vacuum such that all of the ionized resistance by rubbing, impacting or sliding in contact with another species originate from the arc electrodes. See Arc, gaseous. surface or surfaces. Examples: Tumble test, Tabor test, Eraser test. Arc suppression Techniques for quenching an arc before it becomes too destructive. These include: shutting-off the power or introduc- Abrasive cleaning The removal of surface material (gross clean- ing a voltage pulse with an opposite polarity. ing), including contamination, by an abrasive action. Arc vapor deposition (Physical vapor deposition, vacuum deposition Abrupt-type interface (film formation) The interface that is formed processes) Film deposition process where the source of vapor is between two materials (A and B) when there is no diffusion or chemi- from arc vaporization.
    [Show full text]
  • Single-Sideband Filters [Ham-Radio 1968-08 8P]
    single-sideband filters In a single-sideband transmitter, the signal I coming from the balanced modulator is not 0 m yet an ssb signal; it still has both sidebands. Although the carrier has been suppressed, it is a0 A called a double-sideband suppressed-carrier The filters required ; signal. The job of removing the unwanted -w Z sideband is left to a device known simply for generating a ssb signal g as a filter. In a communications receiver, incoming r; signals must be sorted out by the tuned cir- fall into .- cuits of the rf and i-f sections. These coil- -0 P. capacitor combinations may allow adjacent two general categories, signals through almost as well as the desired V10 ones; their response is too broad. Removing crystal and mechanical; g those unwanted "side" frequencies is the job of a filter. 2 4 In a single-sideband receiver, every con- here is a. version the signal goes through generates an 3 unnecessary extra sideband because of the m a description of both nature of the heterodyning process. To re- 7- cover the modulation, the ssb detector needs only the original sideband. The job of elimi- nating the unwanted sideband is turned over to-you guessed it-a filter. On the schematic diagram of a modern ham receiver or transmitter, the filter is 40 august 1968 identified merely by a box labeled F1, F2 or 60-dB point. The ratio between the two FLI, FL2, etc. The filter circuit is almost never bandwidths is called the shape factor. The shown. Nor is the type of filter indicated.
    [Show full text]
  • Mechanical Filters-A Review of Progress
    IEEE TRANSACTIONS ON SONICS AXD ULTRASONICS, VOL. SU-18, NO. 3, JULY 1971 155 Mechanical Filters-A Review of Progress ROBERTA. JOHNSON, MEMBER, IEEE, MANFRED BORNER, AKD MASASIII KONKO, MEMBER, IEEE - Abstract-This paper isareview of electromechanicalbandpass 0 filter, resonator, and transducer development. Filter typesdiscussed include intermediate and low-frequency configurations composed of rod, disk,and flexure-barresonators and magnetostrictive ferrite g and piezoelectricceramic transducers. The resonators and trans- ducers areanalyzed in terms of theirdynamic and material char- 2 2o acteristics. The paper also includes methods of realizing attenuation 2 poles at real and complex frequencies. The last section is a look at future developments. future 30 1 I II l I I 1 IXTRODUCTIOX 100 2W 300 500 1 OW 2000 30W 5ooo FREGUENCY (Hz1 ORE THAN 20 years haw passed since the first Fig. 1. Improvementin phonograph design through the use of practical mechanical filters were introduced by filter design metl~ods[61. Adler [l],Roberts [2], andDoelz [3]. These fibers met an existing need for greater selectivity in the IF stages of AM and SSB receiversdesigned for voice n m / FLEXURE (F" communication. Rlodern receivers and telephone commu- nication equipments carry not only voice but data mes- sages as well, thus requiring lower passband ripple and well-definedand stable passband limits. In addition, greaterselectivity and lon.er loss areoften required. Mcchanic:~l filter development has kept pace with the demands of communicationengineers. For instance, filtershaving passband-~,ipple requirements of 0.5 dB or less or 60/3-dB bandwidthratios of 1.3/1 arenot unusual. Package size has also heen reduced; a 10-pole filter can be designed into a l-c1n3 package.
    [Show full text]
  • Water Level and Wave Height Estimates at NOAA Tide Stations from Acoustic and Microwave Sensors
    NOAA Technical Report NOS CO-OPS 075 Water Level and Wave Height Estimates at NOAA Tide Stations from Acoustic and Microwave Sensors Microwave water level sensors at La Jolla California. Silver Spring, Maryland June 2014 noaa National Oceanic and Atmospheric Administration U.S. DEPARTMENT OF COMMERCE National Ocean Service Center for Operational Oceanographic Products and Services Center for Operational Oceanographic Products and Services National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce The National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) provides the National infrastructure, science, and technical expertise to collect and distribute observations and predictions of water levels and currents to ensure safe, efficient and environmentally sound maritime commerce. The Center provides the set of water level and tidal current products required to support NOS’ Strategic Plan mission requirements, and to assist in providing operational oceanographic data/products required by NOAA’s other Strategic Plan themes. For example, CO-OPS provides data and products required by the National Weather Service to meet its flood and tsunami warning responsibilities. The Center manages the National Water Level Observation Network (NWLON), a national network of Physical Oceanographic Real-Time Systems (PORTS®) in major U. S. harbors, and the National Current Observation Program consisting of current surveys in near shore and coastal areas utilizing bottom mounted
    [Show full text]
  • The R-390A Mechanical Filter R390A IF Deck Alignment
    the R-390A mechanical filter R390A IF Deck Alignment (Chuck Rippel) R390's made after 1954 and those with mod 2 stamped on the IF chassis have a field change installed to the mechanical filters. Filter input and output trimmer capacitors have been added. The 4 input trimmer capacitors are found by removing the 2 square can on top of the IF chassis using the single nut in the top. The 4 output trimmer capacitors are located behind 4 holes in the left hand side of the IF deck. The IF chassis will need to be loose but still electrically connected to complete these procedures. An accurate counter, analog VTVM and a signal generator capable of outputting 455.00 KC, is required for these alignments. Connect the VTVM to the Diode Load bus on the rear and configure it to read a negative voltage of approximately -7vdc. Set the receiver FUNCTION control to MGC, BFO to OFF and the LOCAL GAIN control to a comfortable level. Lift and tilt the IF deck resting the front captive (green) screw over the front panel. You should be able to gain access to the mechanical filter trimmer capacitors through the large ventilation holes in the main chassis. Locate the cable running from the rear of the IF deck to the *IF OUT* BNC connector in the rear panel, upper left side. Unplug the cable from the IF deck only. Also unplug J-513 and the one next to it. Plug the cable running from the rear IF Out jack into J-513 on the IF deck.
    [Show full text]