Analysis of the Nucleotide Binding Sites of Mitochondrial ATP Synthase Provides Evidence for a Two-Site Catalytic Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of the Nucleotide Binding Sites of Mitochondrial ATP Synthase Provides Evidence for a Two-Site Catalytic Mechanism Biochimica et Biophysica Acta 1458 (2000) 234^251 www.elsevier.com/locate/bba Review Analysis of the nucleotide binding sites of mitochondrial ATP synthase provides evidence for a two-site catalytic mechanism J.A. Berden *, A.F. Hartog E.C. Slater Institute, BioCentrum, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands 1. Introduction interactions and the conformational changes during catalysis are studied in much detail, but for conclu- The complexity of the mechanism of ATP hydro- sions on the precise mechanism of catalysis the be- lysis and ATP synthesis by the ATP synthase is illus- haviour and properties of the nucleotide binding trated by the large number of nucleotide binding sites, the topic of this review, have to be taken into sites. They are all localised on the F1 part of the account. enzyme, the hydrophylic moiety that is responsible for the catalytic reaction. Many e¡orts have been 1.1. Well-established features of the ATP synthase made to characterise all the six binding sites and to analyse the role of the nucleotides at each of these Some features of the ATP synthase, considered as sites. In the present paper we will list ¢rst some well well established, may serve as starting point for our established features of the ATP synthase and then analysis. We name the following. discuss the results of studies on the nucleotide bind- (1) F1 contains six nucleotide binding sites, located ing sites of the enzyme and draw some conclusions at each of the three K- and three L-subunits of the on the catalytic mechanism of ATP hydrolysis and enzyme. After the evidence for the presence of three synthesis. We will mainly describe studies with mito- K- and three L-subunits in bacterial F1 [1], it took chondrial F1, but where relevant, studies on the en- some years before the stoichiometry of the subunits zyme from other sources and on the full F0F1 (F0 is of the mitochondrial F1 was established [2,3] and the hydrophobic membrane-embedded part of the again a few years until also suitable evidence for a enzyme) will be mentioned. At present the subunit 3:3 stoichiometry of the large subunits of the chlo- roplast enzyme was provided [4]. Concomitantly the presence of six sites for adenine nucleotides was ¢rmly established for F1 from various sources [5^9]. Abbreviations: 8-N3-AD(T)P, 8-azido-AD(T)P; 2-N3- As far as the nomenclature is concerned, we will call AD(T)P, 2-azido-AD(T)P; AMPPNP, 5P-adenylyl L,Q-imidodi- them K-orL-sites, depending on the mainly contri- phosphate; BzAD(T)P, 3P-O-(4-benzoyl)benzoyl-AD(T)P; buting subunit, although it has been shown in many NAP3-2-N3-ADP, 3P-O-[3-[N-(4-azido-2-nitrophenyl)amino]pro- pionyl]-2-azido-ADP; NbfCl, 7-chloro-4-nitrobenzofurazan; experiments [7,10^13] and con¢rmed by the crystal FSBA, 5P-p-£uorosulfonylbenzoyladenosine; F1, hydrophylic structure [14] that both sites are located at interfaces part of the ATP synthase; F0, hydrophobic membrane-part of between K- and L-subunits. the ATP synthase; F0F1, complete ATP synthase; MF1, mito- (2) The catalytic sites are located on L-subunits. chondrial F1 ;CF1, chloroplast F1 ;TF1,F1 from the thermo- phylic bacterium PS3; SMP, submitochondrial particles This conclusion was already drawn from the initial * Corresponding author. Fax: +31-20-525-5124; studies on nucleotide binding [6,15,16], further estab- E-mail: [email protected] lished by the formulation of a consensus sequence for 0005-2728 / 00 / $ ^ see front matter ß 2000 Elsevier Science B.V. All rights reserved. PII: S0005-2728(00)00076-1 BBABIO 44835 22-5-00 J.A. Berden, A.F. Hartog / Biochimica et Biophysica Acta 1458 (2000) 234^251 235 binding site has to be de¢ned with respect to all four relevant aspects: binding a¤nity (tight or loose bind- ing), exchangeability (non-exchangeable, slowly ex- Fig. 1. Schematic representation of the nucleotide binding sites changeable, rapidly exchangeable), catalytic involve- of F1. The upper row represents the three L-sites (1^3) in order of decreasing a¤nity for nucleotides. The lower row represents ment and localisation. the three K-sites (4^6) in order of decreasing a¤nity. The statement that the catalytic sites are coopera- tive may be a useful tool in the analysis of experi- ATPases [17] and ¢nally unequivocally con¢rmed by ments in which several sites are modi¢ed at the same the reported crystallographic data [14]. time with a covalently binding analogue: if the in- (3) The catalytic mechanism of ATP synthase im- hibition curve, i.e., the curve relating activity with plies the cooperative involvement of more than one the number of modi¢ed sites, is linear, maximally catalytic sites and these catalytic sites show negative one catalytic site is involved in the modi¢cation, cooperativity of binding and positive cooperativity of independent of the total number of sites that has to catalysis. The huge mountain of arguments for these be modi¢ed to obtain full inhibition. If more cata- two assumptions have been well described by Boyer lytic sites are involved, the inhibition curve cannot be [18] and they may be considered as established facts. linear. However, this only holds when it is certain (4) Tight binding of a nucleotide at a catalytic site that the covalent modi¢cation itself is not coopera- is an intermediate step in catalysis [19,20]. Upon re- tive. moval of loosely bound nucleotides, one nucleotide It has been well established that the three L-sub- always remains bound at a catalytic site [21]. This units at any time point not only di¡er in binding nucleotide remains tightly bound as long as the other a¤nity, but are also conformationally di¡erent, re- catalytic site(s) are empty. sulting in di¡erent speci¢city of ligands [22] and dif- On the basis of the formulated assumptions, we ferent interaction with the small subunits [23,24]. will try to describe the properties of each of the six This aspect will be treated in other contributions to binding sites and the role of the nucleotides at these this issue and we will restrict ourselves to just the sites in the process of ATP synthesis and hydrolysis. binding properties of each site under speci¢c condi- We will refer to the sites, if appropriate, with a num- tions. ber, as represented in Fig. 1. The three L-sites are numbered 1^3 and the three K-sites 4^6, in order of decreasing a¤nity. 2. Di¡erences between di¡erent F1 preparations and di¡erent forms of F1 1.2. The di¡erent aspects of nucleotide binding 2.1. Di¡erent preparations of mitochondrial F1 When studying the nucleotide binding sites of F1 it is important to di¡erentiate between the various ele- For the correct analysis of experiments in which ments that are relevant for the characterisation of a nucleotides have been bound to the enzyme, have nucleotide binding site. In the introduction to several been exchanged or have been removed, it is impor- papers the error is made that rapid exchangeability is tant to know the starting situation. The most widely identi¢ed with catalytic involvement, tight binding used preparation of bovine heart F1 is isolated ac- with a non-catalytic role and non-exchangeability cording to the procedure of Knowles and Penefsky with localisation on an K-subunit. However, a cata- [25]. Before use the preparation is freed of loosely lytic site may contain a tightly bound nucleotide, a bound nucleotides by ammonium sulfate precipita- non-catalytic site may contain a rapidly exchange- tion and column centrifugation [26] in the presence able nucleotide and a L-subunit may contain a bind- of EDTA. This preparation contains three tightly ing site that is not participating in rapid catalysis, bound nucleotides [5,27^31], but when Mg2 has despite the fact that only L-sites have catalytic po- been added before the removal of free and loosely tential. It is therefore necessary to de¢ne the property bound nucleotides, about four nucleotides remain that is determined in a speci¢c experiment and each bound [29,32]. On the other hand, the preparations BBABIO 44835 22-5-00 236 J.A. Berden, A.F. Hartog / Biochimica et Biophysica Acta 1458 (2000) 234^251 mostly used by the group of Allison [33,34] and the from bacteria, chloroplasts and mammals also re- pig heart enzyme used by the group of Gautheron spond di¡erently towards the activating anion sul¢te, [35,36] contain only two tightly bound nucleotides an inhibitor of ATP synthesis in some preparations, and such enzyme preparations respond di¡erently but not in others [43]. A well-known example is also towards added nucleotides. The most well-known ex- the presence of tightly bound nucleotides. The pres- ample is the so-called hysteretic inhibition after pre- ence of tightly bound nucleotides in bovine heart F1, incubation of the enzyme with ADP plus Mg2 : discovered in the seventies [28,44], was important for upon addition of ATP to ADP-incubated enzyme the development of the idea that catalysis occurs the hydrolysis activity starts at a maximal rate, but when a nucleotide is tightly bound at a catalytic slows down to 15^20% after a few minutes. This site [19,20], but F1 preparations from the thermo- behaviour is not seen when the enzyme is prepared phylic bacterium PS3 do not contain any tightly according to the procedure of Knowles and Penefsky bound nucleotide [1] and the bound nucleotides [25].
Recommended publications
  • Proteomic Analyses Reveal a Role of Cytoplasmic Droplets As an Energy Source During Sperm Epididymal Maturation
    Proteomic analyses reveal a role of cytoplasmic droplets as an energy source during sperm epididymal maturation Shuiqiao Yuana,b, Huili Zhenga, Zhihong Zhengb, Wei Yana,1 aDepartment of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557; and bDepartment of Laboratory Animal Medicine, China Medical University, Shenyang, 110001, China Corresponding author. Email: [email protected] Supplemental Information contains one Figure (Figure S1), three Tables (Tables S1-S3) and two Videos (Videos S1 and S2) files. Figure S1. Scanning electron microscopic images of purified murine cytoplasmic droplets. Arrows point to indentations resembling the resealed defects at the detaching points when CDs come off the sperm flagella. Scale bar = 1µm Table S1 Mass spectrometry-based identifiaction of proteins highly enriched in murine cytoplasmic droplets. # MS/MS View:Identified Proteins (105) Accession Number Molecular Weight Protein Grouping Ambiguity Dot_1_1 Dot_2_1 Dot_3_1 Dot_4_1Dot_5_1 Dot_1_2 Dot_2_2 Dot_3_2 Dot_4_2 Dot_5_2 1 IPI:IPI00467457.3 Tax_Id=10090 Gene_Symbol=Ldhc L-lactate dehydrogenase C chain IPI00467457 36 kDa TRUE 91% 100% 100% 100% 100% 100% 100% 100% 100% 2 IPI:IPI00473320.2 Tax_Id=10090 Gene_Symbol=Actb Putative uncharacterized protein IPI00473320 42 kDa TRUE 75% 100% 100% 100% 100% 89% 76% 100% 100% 100% 3 IPI:IPI00224181.7 Tax_Id=10090 Gene_Symbol=Akr1b7 Aldose reductase-related protein 1 IPI00224181 36 kDa TRUE 100% 100% 76% 100% 100% 4 IPI:IPI00228633.7 Tax_Id=10090 Gene_Symbol=Gpi1 Glucose-6-phosphate
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Atypical P-Type Atpases, Ctpe and Ctpf from Mycobacteria
    Atypical P-type ATPases, CtpE and CtpF from Mycobacteria tuberculosis by Evren Kocabaş A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Master of Science In Biochemistry __________________________ October 2013 APPROVED: ____________________________ Dr. José Argüello, Major Advisor ____________________________ Dr. Arne Gericke, Head of Department 1 ABSTRACT Mycobacterium tuberculosis causes tuberculosis, one of the most life-threatening diseases of all time. It infects the host macrophages and survives in its phagosome. The host phagosome is a very hostile environment where M. tuberculosis copes with high concentration of transition metals (Zn2+, Cu2+), low levels of others (Mn2+, Fe2+) and acidic pH. P-ATPases are membrane proteins that transport various ions against their electrochemical gradients utilizing the energy of ATP hydrolysis. Based on their primary sequences; seven of the twelve mycobacterial ATPases are classified as putative heavy metal transporters and a K+-ATPase, while the substrate of four (CtpE, CtpF, CtpH and CtpI) remains unknown. Consistent with their membrane topology and conserved amino acids, CtpE and CtpF are possibly P2 or P3-ATPases that transport alkali metals or protons. We examined the cellular roles of orthologous CtpE and CtpF in M. smegmatis, a non-pathogenic model organism. We hypothesized that these novel P- ATPases play an important role in transporting alkali metals and/or protons. We analyzed growth fitness of strains carrying mutations of the coding gens of these enzymes, in presence of various metals and different pHs, as well as the gene expression levels under different stress conditions. We observed that the M.
    [Show full text]
  • Difference Between Atpase and ATP Synthase Key Difference
    Difference Between ATPase and ATP Synthase www.differencebetween.com Key Difference - ATPase vs ATP Synthase Adenosine triphosphate (ATP) is a complex organic molecule that participates in the biological reactions. It is known as “molecular unit of currency” of intracellular energy transfer. It is found in almost all forms of life. In the metabolism, ATP is either consumed or generated. When ATP is consumed, energy is released by converting into ADP (adenosine diphosphate) and AMP (adenosine monophosphate) respectively. The enzyme which catalyzes the following reaction is known as ATPase. ATP → ADP + Pi + Energy is released In other metabolic reactions which incorporate external energy, ATP is generated from ADP and AMP. The enzyme which catalyzes the below-mentioned reaction is called an ATP Synthase. ADP + Pi → ATP + Energy is consumed So, the key difference between ATPase and ATP Synthase is, ATPase is the enzyme that breaks down ATP molecules while the ATP Synthase involves in ATP production. What is ATPase? The ATPase or adenylpyrophosphatase (ATP hydrolase) is the enzyme which decomposes ATP molecules into ADP and Pi (free phosphate ion.) This decomposition reaction releases energy which is used by other chemical reactions in the cell. ATPases are the class of membrane-bound enzymes. They consist of a different class of members that possess unique functions such as Na+/K+-ATPase, Proton-ATPase, V-ATPase, Hydrogen Potassium–ATPase, F-ATPase, and Calcium-ATPase. These enzymes are integral transmembrane proteins. The transmembrane ATPases move solutes across the biological membrane against their concentration gradient typically by consuming the ATP molecules. So, the main functions of the ATPase enzyme family members are moving cell metabolites across the biological membrane and exporting toxins, waste and the solutes that can hinder the normal cell function.
    [Show full text]
  • Characterization of a Novel Amino-Terminal Domain from a Copper Transporting P-Type Atpase Implicated in Human Genetic Disorders of Copper Metabolism
    Characterization of a Novel Amino-Terminal Domain From A Copper Transporting P-Type ATPase Implicated in Human Genetic Disorders of Copper Metabolism Michael DiDonato A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Biochemistry University of Toronto O Copyright by Michael DiDonato 1999 National Library Bibliothèque nationale 1+1 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington Omwa ON K 1A ON4 OrtawaON KlAON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive Licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou copies of this thesis in microformy vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be p~tedor otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. This rhesis is dedicated ro the mentor): of Micltele DiDonato and Domenico Beftini ABSTRACT Characterization of a novel copper transporting P-type ATPase implicated in human genetic disorders of copper metabolism Degree of Doctor of Philosophy, 1999. Michael DiDonato Graduate Department of Biochemistry, University of Toronto The -70 kDa copper binding domain fiom the Wilson disease copper transporting P- tvpe ATPase was expressed and purified as a fiision to giutathione-S-transferase (GST).
    [Show full text]
  • 1 CONSTRUCTION and DISULFIDE CROSSLINKING of CHIMERIC B
    CONSTRUCTION AND DISULFIDE CROSSLINKING OF CHIMERIC b SUBUNITS IN THE PERIPHERAL STALK OF F1FO ATP SYNTHASE FROM Escherichia coli By SHANE B. CLAGGETT A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 © 2008 Shane B. Claggett 2 To the highest benefit of all beings. 3 ACKNOWLEDGMENTS I thank my parents for the gift of life and the desire to learn and grow, and I thank all of my teachers for the knowledge they have so diligently acquired and patiently passed on. I especially thank my professor, Dr. Brian Cain, and the members of my committee for their support and guidance. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................8 LIST OF FIGURES .........................................................................................................................9 ABSTRACT...................................................................................................................................13 CHAPTER 1 INTRODUCTION ..................................................................................................................15 Overview of F1FO ATP Synthase............................................................................................15 Crosslinking
    [Show full text]
  • 1 Novel Functions of the Flippase Drs2 and the Coat Protein COPI In
    Novel Functions of the Flippase Drs2 and the Coat Protein COPI in Protein Trafficking By Hannah Marcille Hankins Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences May, 2016 Nashville, Tennessee Approved: Todd R. Graham, Ph.D Katherine L. Friedman, Ph.D. Kendal S. Broadie, Ph.D. Anne K. Kenworthy, Ph.D. Charles R. Sanders, Ph.D. 1 ACKNOWLEDGEMENTS It takes a village to raise a graduate student, and I have many villagers to thank for getting me to this point. I would never have considered doing research if it were not for my professors at Henderson State University, particularly Martin Campbell and Troy Bray, who were very supportive and encouraging throughout my undergraduate studies. I was also fortunate to be able to do full time research during the summers of my sophomore and junior years in the lab of Kevin Raney at the University of Arkansas for Medical Sciences. If it were not for the support system and these wonderful research experiences I had as an undergraduate, I never would have pursued graduate school at Vanderbilt and would not be the scientist I am today. I would like to thank my graduate school mentor, Todd Graham, for giving me the opportunity to join his lab and for introducing me to the wonderful world of yeast. Todd is an amazing and enthusiastic scientist; his guidance and support throughout my graduate career has been invaluable and I am truly grateful to have such a wonderful mentor.
    [Show full text]
  • Protons and How They Are Transported by Proton Pumps
    Pflugers Arch - Eur J Physiol (2009) 457:573–579 DOI 10.1007/s00424-008-0503-8 ION CHANNELS, RECEPTORS AND TRANSPORTERS Protons and how they are transported by proton pumps M. J. Buch-Pedersen & B. P. Pedersen & B. Veierskov & P. Nissen & M. G. Palmgren Received: 28 January 2008 /Revised: 17 March 2008 /Accepted: 21 March 2008 / Published online: 6 May 2008 # Springer-Verlag 2008 Abstract The very high mobility of protons in aqueous proton acceptor/donor, and bound water molecules to solutions demands special features of membrane proton facilitate rapid proton transport along proton wires. transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the Keywords Proton transport . P-type pumps . chemical energy of ATP, plasma-membrane-embedded Membrane potential . Membrane protein structure . ATPases extrude protons from cells of plants and fungi to Membrane transport . Proton current . Topical review. generate electrochemical proton gradients. The recently Protons . ATP published crystal structure of a plasma membrane H+- ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and Proton transport across biological membranes structural data together, we are now able to describe the basic molecular components that allow the plasma mem- Compared to other ions, protons have an extremely high brane proton H+-ATPase to carry out proton transport mobility in aqueous solution. Protons in aqueous solution against large membrane potentials. When divergent proton do not exist as naked protons, but are instead found as + 2+ pumps such as the plasma membrane H -ATPase, bacter- hydrated proton molecules, either as a H5O dihydronium + iorhodopsin, and FOF1 ATP synthase are compared, ion complex or as a H9O4 complex (with a hydronium ion, + unifying mechanistic premises for biological proton pumps H3O , hydrogen bonded to three water molecules) [3, 10, emerge.
    [Show full text]
  • Extra-Gastric Expression of the Proton Pump H<Sup>+</Sup>/K<Sup>+</Sup>-Atpase in the Gills and Kidney O
    © 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb214890. doi:10.1242/jeb.214890 RESEARCH ARTICLE Extra-gastric expression of the proton pump H+/K+-ATPase in the gills and kidney of the teleost Oreochromis niloticus Ebtesam Ali Barnawi1, Justine E. Doherty1,Patrıciá Gomes Ferreira1 and Jonathan M. Wilson1,2,* ABSTRACT drive direct and indirect ion fluxes are the basolateral Na+/K+- Potassium regulation is essential for the proper functioning of excitable ATPase that provides a sodium motive force and an apical vacuolar- tissues in vertebrates. The H+/K+-ATPase (HKA), which is composed type proton-ATPase that provides a proton motive force (Evans of the HKα1 (gene: atp4a)andHKβ (gene: atp4b) subunits, has an et al., 2005; Hwang et al., 2011). However, Choe et al. (2004) have + + established role in potassium and acid–base regulation in mammals provided some evidence of a role of the H /K -ATPase (HKA) in and is well known for its role in gastric acidification. However, the role of ion regulation in elasmobranch fish gills. HKA in extra-gastric organs such as the gill and kidney is less clear, The main site of HKA expression is the stomach in vertebrates especially in fishes. In the present study in Nile tilapia, Oreochromis (Shin et al., 2009; Wilson and Castro, 2010). HKA is composed of α β niloticus, uptake of the K+ surrogate flux marker rubidium (Rb+)was HK 1 (gene: ATP4A)andHK (ATP4B) subunits (Pedersen and β demonstrated in vivo; however, this uptake was not inhibited with Carafoli, 1987).
    [Show full text]
  • Materialsuplementario
    MATERIAL SUPLEMENTARIO Figura suplementaria 1. Alineamiento de la secuencia nucleotídica del primer exón de Catsper1. Las regiones que contienen inserciones o deleciones (indels) son indicadas. Cricetulus griseus se incluye en el alineamiento porque fue utilizado como linaje externo en los análisis evolutivos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Figura suplementaria 2. Diagnósticos de regresión entre la longitud de Catsper1 y la masa relativa de testículo. El punto número 4 se corresponde con la especie Mastomys natalensis, la cual se consideró un outlier por mostrar una alta desviación respecto a la distribución de los datos. Aunque aquí no se muestra, se observaron los mismos resultados cuando se utilizaron los parámetros de velocidad como variables predictoras. Residuales vs Ajustados Normal Q-Q Residuales Residuales estandarizados Residuales Valores ajustados Cuantiles teóricos Escala - localización Diagrama de dispersión terminal de de Catsper1 terminal - Raíz cuadrada de los los de Raíz cuadrada Residuales estandarizados Residuales Tamaño de la región Tamaño la de región N Valores ajustados Masa relativa de testículos Rectitud (%) Velocidad curvilinea (μm/s) espermática. espermática. N región la de longitud la entre asociación la representando Gráficas 3. suplementaria Figura Longitud Longitud del N Longitud Longitud del N - - terminal Catsper1 terminal de terminal Catsper1 terminal de Amplitud del desplazamiento lateral de la cabeza (%) Velocidad rectilinea (μm/s) Longitud Longitud del N Longitud Longitud del N - terminal Catsper1 terminal de - terminal Catsper1 terminal de Velocidad de la trayectoria Frecuencia de batido (Hz) media (μm/s) Longitud Longitud del N Longitud del N - terminal de CatSper1 y los parámet losy CatSper1 de terminal - - terminal Catsper1 terminal de Catsper1 terminal de Linearidad (%) Longitud Longitud del N ros de velocidad velocidad de ros - terminal Catsper1 terminal de Figura suplementaria 4.
    [Show full text]
  • Evidence for Extra-Gastric Expression of the Proton Pump H+/K+ -Atpase in the Gills and Kidney of the Teleost Oreochromis Niloticus
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 2018 Evidence for extra-gastric expression of the proton pump H+/K+ -ATPase in the gills and kidney of the teleost Oreochromis niloticus Ebtesam Barnawi [email protected] Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Cell and Developmental Biology Commons, Integrative Biology Commons, Marine Biology Commons, Molecular Biology Commons, and the Zoology Commons Recommended Citation Barnawi, Ebtesam, "Evidence for extra-gastric expression of the proton pump H+/K+ -ATPase in the gills and kidney of the teleost Oreochromis niloticus" (2018). Theses and Dissertations (Comprehensive). 2025. https://scholars.wlu.ca/etd/2025 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. Evidence for extra-gastric expression of the proton pump H+/K+ -ATPase in the gills and kidney of the teleost Oreochromis niloticus Ebtesam Ali Barnawi Bachelor of Science, Zoology, King Abdul-Aziz University 2012 Thesis Submitted to the Department of Biology Faculty of Science In partial fulfillment of the requirements for the Master of Science in Integrative Biology Wilfrid Laurier University, Waterloo, Ontario Canada 2017 Ebtesam Barnawi 2017 © i Abstract: It is well known that stomach acid secretion by oxynticopeptic cells of the gastric mucosa is accomplished by the H+/ K+-ATPase (HKA), which is comprised of the HKα1 (gene: atp4a) and HKβ (gene: atp4b) subunits. However, the role of the HKA in extra-gastric organs such as the gill and kidney is less clear especially in fishes.
    [Show full text]
  • Vacuolar H-Atpase Meets Glycosylation in Patients with Cutis Laxa Mailys Guillard, Aikaterini Dimopoulou, Björn Fischer, Eva Morava, Dirk J
    Vacuolar H-ATPase meets glycosylation in patients with cutis laxa Mailys Guillard, Aikaterini Dimopoulou, Björn Fischer, Eva Morava, Dirk J. Lefeber, Uwe Kornak, Ron A. Wevers To cite this version: Mailys Guillard, Aikaterini Dimopoulou, Björn Fischer, Eva Morava, Dirk J. Lefeber, et al.. Vacuolar H-ATPase meets glycosylation in patients with cutis laxa. Biochimica et Biophysica Acta - Molecular Basis of Disease, Elsevier, 2009, 1792 (9), pp.903. 10.1016/j.bbadis.2008.12.009. hal-00517928 HAL Id: hal-00517928 https://hal.archives-ouvertes.fr/hal-00517928 Submitted on 16 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Vacuolar H+-ATPase meets glycosylation in patients with cutis laxa Mailys Guillard, Aikaterini Dimopoulou, Bj¨orn Fischer, Eva Morava, Dirk J. Lefeber, Uwe Kornak, Ron A. Wevers PII: S0925-4439(09)00003-9 DOI: doi:10.1016/j.bbadis.2008.12.009 Reference: BBADIS 62910 To appear in: BBA - Molecular Basis of Disease Received date: 7 November 2008 Revised date: 22 December 2008 Accepted date: 29 December 2008 Please cite this article as: Mailys Guillard, Aikaterini Dimopoulou, Bj¨orn Fischer, Eva Morava, Dirk J.
    [Show full text]