A History of Modern 64-Bit Computing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPP 2019.09.0 Component Release Notes
SPP 2019.09.0 Component Release Notes BIOS - System ROM Driver - Chipset Driver - Network Driver - Storage Driver - Storage Controller Driver - Storage Fibre Channel and Fibre Channel Over Ethernet Driver - System Driver - System Management Driver - Video Firmware - Blade Infrastructure Firmware - Lights-Out Management Firmware - Network Firmware - NVDIMM Firmware - PCIe NVMe Storage Disk Firmware - Power Management Firmware - SAS Storage Disk Firmware - SATA Storage Disk Firmware - Storage Controller Firmware - Storage Fibre Channel Firmware - System Firmware (Entitlement Required) - Storage Controller Software - Lights-Out Management Software - Management Software - Network Software - Storage Controller Software - Storage Fibre Channel Software - Storage Fibre Channel HBA Software - System Management BIOS - System ROM Top Online ROM Flash Component for Linux - HPE ProLiant DL380 Gen9/DL360 Gen9 (P89) Servers Version: 2.74_07-21-2019 (Optional) Filename: RPMS/i386/firmware-system-p89-2.74_2019_07_21-1.1.i386.rpm Important Note! Important Notes: None Deliverable Name: HPE ProLiant DL360/DL380 Gen9 System ROM - P89 Release Version: 2.74_07-21-2019 Last Recommended or Critical Revision: 2.72_03-25-2019 Previous Revision: 2.72_03-25-2019 Firmware Dependencies: None Enhancements/New Features: This revision of the System ROM includes the latest revision of the Intel microcode which provides mitigation for an Intel sighting where the system may experience a machine check after updating to the latest System ROM which contained a fix for an Intel TSX (Transactional Synchronizations Extensions) sightings. The previous microcode was first introduced in the v2.70 System ROM. This issue only impacts systems configured with Intel Xeon v4 Series processors. This issue is not unique to HPE servers. Problems Fixed: Addressed an extremely rare issue where a system booting to VMware may experience a PSOD in legacy boot mode. -
Evaluation of Architectural Support for Global Address-Based
Evaluation of Architectural Supp ort for Global AddressBased Communication in LargeScale Parallel Machines y y Arvind Krishnamurthy Klaus E Schauser Chris J Scheiman Randolph Y Wang David E Culler and Katherine Yelick the sp ecic target architecture Wehave develop ed multi Abstract ple highly optimized versions of this compiler employing a Largescale parallel machines are incorp orating increas range of co degeneration strategies for machines with dedi ingly sophisticated architectural supp ort for userlevel mes cated network pro cessors In this studywe use this sp ec saging and global memory access We provide a systematic trum of runtime techniques to evaluate the p erformance evaluation of a broad sp ectrum of current design alternatives tradeos in architectural supp ort for communication found based on our implementations of a global address language in several of the current largescale parallel machines on the Thinking Machines CM Intel Paragon Meiko CS We consider ve imp ortant largescale parallel platforms Cray TD and Berkeley NOW This evaluation includes that havevarying degrees of architectural supp ort for com a range of compilation strategies that makevarying use of munication the Thinking Machines CM Intel Paragon the network pro cessor each is optimized for the target ar Meiko CS Cray TD and Berkeley NOW The CM pro chitecture and the particular strategyWe analyze a family vides direct userlevel access to the network the Paragon of interacting issues that determine the p erformance trade provides a network pro cessor -
Microcode Revision Guidance August 31, 2019 MCU Recommendations
microcode revision guidance August 31, 2019 MCU Recommendations Section 1 – Planned microcode updates • Provides details on Intel microcode updates currently planned or available and corresponding to Intel-SA-00233 published June 18, 2019. • Changes from prior revision(s) will be highlighted in yellow. Section 2 – No planned microcode updates • Products for which Intel does not plan to release microcode updates. This includes products previously identified as such. LEGEND: Production Status: • Planned – Intel is planning on releasing a MCU at a future date. • Beta – Intel has released this production signed MCU under NDA for all customers to validate. • Production – Intel has completed all validation and is authorizing customers to use this MCU in a production environment. -
The Central Processing Unit(CPU). the Brain of Any Computer System Is the CPU
Computer Fundamentals 1'stage Lec. (8 ) College of Computer Technology Dept.Information Networks The central processing unit(CPU). The brain of any computer system is the CPU. It controls the functioning of the other units and process the data. The CPU is sometimes called the processor, or in the personal computer field called “microprocessor”. It is a single integrated circuit that contains all the electronics needed to execute a program. The processor calculates (add, multiplies and so on), performs logical operations (compares numbers and make decisions), and controls the transfer of data among devices. The processor acts as the controller of all actions or services provided by the system. Processor actions are synchronized to its clock input. A clock signal consists of clock cycles. The time to complete a clock cycle is called the clock period. Normally, we use the clock frequency, which is the inverse of the clock period, to specify the clock. The clock frequency is measured in Hertz, which represents one cycle/second. Hertz is abbreviated as Hz. Usually, we use mega Hertz (MHz) and giga Hertz (GHz) as in 1.8 GHz Pentium. The processor can be thought of as executing the following cycle forever: 1. Fetch an instruction from the memory, 2. Decode the instruction (i.e., determine the instruction type), 3. Execute the instruction (i.e., perform the action specified by the instruction). Execution of an instruction involves fetching any required operands, performing the specified operation, and writing the results back. This process is often referred to as the fetch- execute cycle, or simply the execution cycle. -
The Microarchitecture of a Low Power Register File
The Microarchitecture of a Low Power Register File Nam Sung Kim and Trevor Mudge Advanced Computer Architecture Lab The University of Michigan 1301 Beal Ave., Ann Arbor, MI 48109-2122 {kimns, tnm}@eecs.umich.edu ABSTRACT Alpha 21464, the 512-entry 16-read and 8-write (16-r/8-w) ports register file consumed more power and was larger than The access time, energy and area of the register file are often the 64 KB primary caches. To reduce the cycle time impact, it critical to overall performance in wide-issue microprocessors, was implemented as two 8-r/8-w split register files [9], see because these terms grow superlinearly with the number of read Figure 1. Figure 1-(a) shows the 16-r/8-w file implemented and write ports that are required to support wide-issue. This paper directly as a monolithic structure. Figure 1-(b) shows it presents two techniques to reduce the number of ports of a register implemented as the two 8-r/8-w register files. The monolithic file intended for a wide-issue microprocessor without hardly any register file design is slow because each memory cell in the impact on IPC. Our results show that it is possible to replace a register file has to drive a large number of bit-lines. In register file with 16 read and 8 write ports, intended for an eight- contrast, the split register file is fast, but duplicates the issue processor, with a register file with just 8 read and 8 write contents of the register file in two memory arrays, resulting in ports so that the impact on IPC is a few percent. -
Historical Perspective and Further Reading 162.E1
2.21 Historical Perspective and Further Reading 162.e1 2.21 Historical Perspective and Further Reading Th is section surveys the history of in struction set architectures over time, and we give a short history of programming languages and compilers. ISAs include accumulator architectures, general-purpose register architectures, stack architectures, and a brief history of ARMv7 and the x86. We also review the controversial subjects of high-level-language computer architectures and reduced instruction set computer architectures. Th e history of programming languages includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C+ + , and Java, and the history of compilers includes the key milestones and the pioneers who achieved them. Accumulator Architectures Hardware was precious in the earliest stored-program computers. Consequently, computer pioneers could not aff ord the number of registers found in today’s architectures. In fact, these architectures had a single register for arithmetic instructions. Since all operations would accumulate in one register, it was called the accumulator , and this style of instruction set is given the same name. For example, accumulator Archaic EDSAC in 1949 had a single accumulator. term for register. On-line Th e three-operand format of RISC-V suggests that a single register is at least two use of it as a synonym for registers shy of our needs. Having the accumulator as both a source operand and “register” is a fairly reliable indication that the user the destination of the operation fi lls part of the shortfall, but it still leaves us one has been around quite a operand short. Th at fi nal operand is found in memory. -
Am186em and Am188em User's Manual
Am186EM and Am188EM Microcontrollers User’s Manual © 1997 Advanced Micro Devices, Inc. All rights reserved. Advanced Micro Devices, Inc. ("AMD") reserves the right to make changes in its products without notice in order to improve design or performance characteristics. The information in this publication is believed to be accurate at the time of publication, but AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication or the information contained herein, and reserves the right to make changes at any time, without notice. AMD disclaims responsibility for any consequences resulting from the use of the information included in this publication. This publication neither states nor implies any representations or warranties of any kind, including but not limited to, any implied warranty of merchantability or fitness for a particular purpose. AMD products are not authorized for use as critical components in life support devices or systems without AMD’s written approval. AMD assumes no liability whatsoever for claims associated with the sale or use (including the use of engineering samples) of AMD products except as provided in AMD’s Terms and Conditions of Sale for such products. Trademarks AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Am386 and Am486 are registered trademarks, and Am186, Am188, E86, AMD Facts-On-Demand, and K86 are trademarks of Advanced Micro Devices, Inc. FusionE86 is a service mark of Advanced Micro Devices, Inc. Product names used in this publication are for identification purposes only and may be trademarks of their respective companies. -
Parallel Computer Systems
Parallel Computer Systems Randal E. Bryant CS 347 Lecture 27 April 29, 1997 Topics • Parallel Applications • Shared vs. Distributed Model • Concurrency Models • Single Bus Systems • Network-Based Systems • Lessons Learned Motivation Limits to Sequential Processing • Cannot push clock rates beyond technological limits • Instruction-level parallelism gets diminishing returns – 4-way superscalar machines only get average of 1.5 instructions / cycle – Branch prediction, speculative execution, etc. yield diminishing returns Applications have Insatiable Appetite for Computing • Modeling of physical systems • Virtual reality, real-time graphics, video • Database search, data mining Many Applications can Exploit Parallelism • Work on multiple parts of problem simultaneously • Synchronize to coordinate efforts • Communicate to share information – 2 – CS 347 S’97 Historical Perspective: The Graveyard • Lots of venture capital and DoD Resarch $$’s • Too big to enumerate, but some examples … ILLIAC IV • Early research machine with overambitious technology Thinking Machines • CM-2: 64K single-bit processors with single controller (SIMD) • CM-5: Tightly coupled network of SPARC processors Encore Computer • Shared memory machine using National microprocessors Kendall Square Research KSR-1 • Shared memory machine using proprietary processor NCUBE / Intel Hypercube / Intel Paragon • Connected network of small processors • Survive only in niche markets – 3 – CS 347 S’97 Historical Perspective: Successes Shared Memory Multiprocessors (SMP’s) • E.g., SGI -
SYSCALL, IRET ● Opportunistic SYSRET Failed, Do IRET
entry_*.S A carefree stroll through kernel entry code Borislav Petkov SUSE Labs [email protected] Reasons for entry into the kernel ● System calls (64-bit, compat, 32-bit) ● Interrupts (NMIs, APIC, timer, IPIs... ) – software: INT 0x0-0xFF, INT3, … – external (hw-generated): CPU-ext logic, async to insn exec ● Architectural exceptions (sync vs async) – faults: precise, reported before faulting insn => restartable (#GP,#PF) – traps: precise, reported after trapping insn (#BP,#DB-both) – aborts: imprecise, not reliably restartable (#MC, unless MCG_STATUS.RIPV) 2 Intr/Ex entry ● IDT, int num index into it (256 vectors); all modes need an IDT ● If handler has a higher CPL, switch stacks ● A picture is always better: 3 45sec guide to Segmentation ● Continuous range at an arbitrary position in VA space ● Segments described by segment descriptors ● … selected by segment selectors ● … by indexing into segment descriptor tables (GDT,LDT,IDT,...) ● … and loaded by the hw into segment registers: – user: CS,DS,{E,F,G}S,SS – system: GDTR,LDTR,IDTR,TR (TSS) 4 A couple more seconds of Segmentation ● L (bit 21) new long mode attr: 1=long mode, 0=compat mode ● D (bit 22): default operand and address sizes ● legacy: D=1b – 32bit, D=0b – 16bit ● long mode: D=0b – 32-bit, L=1,D=1 reserved for future use ● G (bit 23): granularity: G=1b: seg limit scaled by 4K ● DPL: Descriptor Privilege Level of the segment 5 Legacy syscalls ● Call OS through gate descriptor (call, intr, trap or task gate) ● Overhead due to segment-based protection: – load new selector + desc into -
Class-Action Lawsuit
Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 1 of 279 Steve D. Larson, OSB No. 863540 Email: [email protected] Jennifer S. Wagner, OSB No. 024470 Email: [email protected] STOLL STOLL BERNE LOKTING & SHLACHTER P.C. 209 SW Oak Street, Suite 500 Portland, Oregon 97204 Telephone: (503) 227-1600 Attorneys for Plaintiffs [Additional Counsel Listed on Signature Page.] UNITED STATES DISTRICT COURT DISTRICT OF OREGON PORTLAND DIVISION BLUE PEAK HOSTING, LLC, PAMELA Case No. GREEN, TITI RICAFORT, MARGARITE SIMPSON, and MICHAEL NELSON, on behalf of CLASS ACTION ALLEGATION themselves and all others similarly situated, COMPLAINT Plaintiffs, DEMAND FOR JURY TRIAL v. INTEL CORPORATION, a Delaware corporation, Defendant. CLASS ACTION ALLEGATION COMPLAINT Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 2 of 279 Plaintiffs Blue Peak Hosting, LLC, Pamela Green, Titi Ricafort, Margarite Sampson, and Michael Nelson, individually and on behalf of the members of the Class defined below, allege the following against Defendant Intel Corporation (“Intel” or “the Company”), based upon personal knowledge with respect to themselves and on information and belief derived from, among other things, the investigation of counsel and review of public documents as to all other matters. INTRODUCTION 1. Despite Intel’s intentional concealment of specific design choices that it long knew rendered its central processing units (“CPUs” or “processors”) unsecure, it was only in January 2018 that it was first revealed to the public that Intel’s CPUs have significant security vulnerabilities that gave unauthorized program instructions access to protected data. 2. A CPU is the “brain” in every computer and mobile device and processes all of the essential applications, including the handling of confidential information such as passwords and encryption keys. -
AMD-K5TM Processor
AMD-K5TM Processor Data Sheet Publication # 18522 Rev: F Amendment/0 Issue Date: January 1997 This document contains information on a product under development at AMD. The information is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice. © 1997 Advanced Micro Devices, Inc. All Rights Reserved. Advanced Micro Devices, Inc. ("AMD") reserves the right to make changes in its products without notice in order to improve design or performance charac- teristics. The information in this publication is believed to be accurate at the time of publication, but AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication or the information contained herein, and reserves the right to make changes at any time, without notice. AMD disclaims responsibility for any consequences resulting from the use of the information included in this publication. This publication neither states nor implies any representations or warranties of any kind, including but not limited to, any implied warranty of merchantability or fitness for a particular purpose. AMD products are not authorized for use as critical components in life support devices or systems without AMD’s written approval. AMD assumes no liability whatsoever for claims associated with the sale or use (including the use of engineering samples) of AMD products except as provided in AMD’s Terms and Conditions of Sale for such product. Trademarks: AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Am486 is a registered trademark, and AMD-K5 is a trademark of Advanced Micro Devices, Inc. -
Evolution of Microprocessor Performance
EvolutionEvolution ofof MicroprocessorMicroprocessor PerformancePerformance So far we examined static & dynamic techniques to improve the performance of single-issue (scalar) pipelined CPU designs including: static & dynamic scheduling, static & dynamic branch predication. Even with these improvements, the restriction of issuing a single instruction per cycle still limits the ideal CPI = 1 Multiple Issue (CPI <1) Multi-cycle Pipelined T = I x CPI x C (single issue) Superscalar/VLIW/SMT Original (2002) Intel Predictions 1 GHz ? 15 GHz to ???? GHz IPC CPI > 10 1.1-10 0.5 - 1.1 .35 - .5 (?) Source: John P. Chen, Intel Labs We next examine the two approaches to achieve a CPI < 1 by issuing multiple instructions per cycle: 4th Edition: Chapter 2.6-2.8 (3rd Edition: Chapter 3.6, 3.7, 4.3 • Superscalar CPUs • Very Long Instruction Word (VLIW) CPUs. Single-issue Processor = Scalar Processor EECC551 - Shaaban Instructions Per Cycle (IPC) = 1/CPI EECC551 - Shaaban #1 lec # 6 Fall 2007 10-2-2007 ParallelismParallelism inin MicroprocessorMicroprocessor VLSIVLSI GenerationsGenerations Bit-level parallelism Instruction-level Thread-level (?) (TLP) 100,000,000 (ILP) Multiple micro-operations Superscalar /VLIW per cycle Simultaneous Single-issue CPI <1 u Multithreading SMT: (multi-cycle non-pipelined) Pipelined e.g. Intel’s Hyper-threading 10,000,000 CPI =1 u uuu u u Chip-Multiprocessors (CMPs) u Not Pipelined R10000 e.g IBM Power 4, 5 CPI >> 1 uuuuuuu u AMD Athlon64 X2 u uuuuu Intel Pentium D u uuuuuuuu u u 1,000,000 u uu uPentium u u uu i80386 u i80286