Chlorophytes), an Emerging Model for Comparative Analyses with Basal Streptophytes Lenka Caisová1* and Timothy O

Total Page:16

File Type:pdf, Size:1020Kb

Chlorophytes), an Emerging Model for Comparative Analyses with Basal Streptophytes Lenka Caisová1* and Timothy O Caisová and Jobe Plant Methods (2019) 15:74 https://doi.org/10.1186/s13007-019-0460-6 Plant Methods METHODOLOGY Open Access Regeneration and transient gene expression in protoplasts of Draparnaldia (chlorophytes), an emerging model for comparative analyses with basal streptophytes Lenka Caisová1* and Timothy O. Jobe2 Abstract Background: Green plants comprise two lineages: (1) the streptophytes that colonised land and (2) the chlorophytes that have adaptations to land but remained mostly aquatic. To better understand what made streptophytes so suc- cessful, we are currently establishing the chlorophyte alga Draparnaldia sp. (Chaetophorales, Chlorophyceae) as a model for comparative analyses between these two lineages. However, establishing Draparnaldia as a valuable model requires that it can be transformed. Thus, our goal is to develop a transformation protocol for this alga. Results: We have established the frst transformation protocol for Draparnaldia. This protocol is based on protoplast transformation by electroporation. It includes instructions on protoplast isolation, regeneration and transient transfec- tion. It also provides a list of the efective selective agents for future Draparnaldia transformations. Conclusions: Our protocol opens a way for Draparnaldia functional genomics analyses. Moreover, it also provides an important base for establishment of stable transformation. Keywords: Chlorophytes, Colonization of land, Draparnaldia, Land plants, Model organism, Protoplasts, Streptophytes, Transformation Background resemble mosses. Tis raises the important question of Colonization of land by plants was a major transition why no land plants have evolved from chlorophytes? on Earth. Although it is generally accepted that land To better understand what made streptophytes so plants evolved from freshwater streptophyte algae, their successful, we are currently establishing the freshwater key properties enabling such a transition are still poorly multicellular chlorophyte alga Draparnaldia sp. (Chae- understood [1–5 and citations therein]. To examine these tophorales, Chlorophyceae) as a model for comparative properties several basal land plant and streptophyte algal analyses between these two lineages. For the phyloge- models, such as Anthoceros [6], Chara [7], Closterium netic position of Draparnaldia in the green tree of life [8], Klebsormidium [9], Marchantia [10], Mougeotia [11] see Fig. 1. Draparnaldia possesses a broad range of and Physcomitrella [12] are (or are currently being) estab- adaptations to aquatic and terrestrial habitats. It dis- lished. However, there are also many chlorophytes (a plays complex morphology similar to mosses and some sister lineage to streptophyte algae and land plants) that streptophyte algae: branching flaments, rhizoids with moved to terrestrial habitats and morphologically even apical growth, and tissue specialization [13–15]. It also reproduces in a similar manner as many streptophyte algae, for Draparnaldia life cycle see Fig. 2. Moreo- *Correspondence: [email protected] ver, it is well positioned phylogenetically. It belongs to 1 Centre for Plant Sciences, Faculty of Biological Sciences, University the Chaetophorales (fg. 1 in Ref. [13]), whose species of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK Full list of author information is available at the end of the article range from unbranched flaments with a single-celled © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/ publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Caisová and Jobe Plant Methods (2019) 15:74 Page 2 of 14 Chlorophyceae Land plants Chlamydomonas (Chlamydo- Anthoceros, monadales) Marchantia, Draparnaldia Physcomitrella (Chaetophorales) Zygnematophyceae Ulvophyceae Closterium, Mougeotia Chlor Coleochaetales Trebouxiophyceae ophytes Charales Chlorodendrophyceae Chara Streptophytes Klebsormidiales Pedinophyceae Klebsormidium Prasinophytes Mesostigmatales, Chlorokybales flagellated alga Fig. 1 Phylogenetic position of Draparnaldia in the green tree of life. In addition to Draparnaldia, a well-established Chlamydomonas chlorophyte model species as well as several streptohyte models are shown. The tree schematic is based on Ref. [4, 65–67]. Dash-lined lineages are probably not monophyletic attachment to branched flaments with multi-celled studies. (2) Exogenous DNA can be delivered into the rhizoids. Tus, it enables comparison of complex fla- cell using diferent methods, such as electroporation mentous body development between chlorophytes and [22, 23] or polyethylene glycol (PEG)-mediated trans- basal streptophytes. All these features make Drapar- formation [24, 25]. (3) A few reports about protoplast naldia an attractive model to distinguish properties isolation and regeneration in flamentous chlorophytes that are unique to streptophytes from those that are exist [26–28], suggesting that protoplast transforma- common to both chlorophytes and streptophytes. tion might be possible. Here, we present the frst pro- Draparnaldia transcriptome has recently been tocol for protoplast transformation of Draparnaldia. sequenced and will be published in a separate paper. Te protocol consists of four parts: protoplast isolation, In addition, there is a plan for genome sequencing. regeneration, transient transfection via electroporation, However, establishing Draparnaldia as a valuable and identifcation of efective selective agents for future model also requires that it is genetically transform- Draparnaldia transformations. able. From the variety of methods for plant and algal transformation [11, 16–21] we focused on transfor- Methods mation via protoplasts. Te reasons for this choice Chemicals and equipment were threefold: (1) It permits regeneration of the alga All chemicals were of highest purity grade and were from a single cell, which is crucial for developmental purchased from Bayer, Duchefa Biochemie, Merck, Caisová and Jobe Plant Methods (2019) 15:74 Page 3 of 14 US akinetes young germling US germination PS US US US PS asexual asexual zoospore formation akinete formation (aquatic habitat) zoospore US US US young PS US PS zygote microzoospores sexual(?) fusion Fig. 2 Life cycle of Draparnaldia. Two types of asexual reproduction are presented. Zoospores are strictly aquatic reproductive stages and have a distinct Upright Sytem (US) and Prostrate System (PS). Akinetes ( resting stages) are zoospores arrested in a parental flament. They are formed = during drought periods and enable a long-term survival in the terrestrial habitat. However, water availability is required for their germination. The germinating akinetes have only the US, the PS is formed later. Note, that Draparnaldia is also capable of fragmentation (not shown). Fragmentation is initiated with algal transition from the aquatic to the terrestrial habitat. It leads to the flament splitting into two new flaments with a fully developed UP and PS. A general mechanism of the fragmentation process has been described in Ref. [29]. In addition, a sexual reproduction of Draparnaldia has been reported [68], but it has not been confrmed for this specifc strain New England BioLabs, Roth, Serva, Sigma-Aldrich or was adjusted to 7.2 with NaOH and/or HCl. Te solution Termo Fisher Scientifc (Additional fle 1: Supplement was sterilized with a 0.2-μm flter and stored at the room 1a). Equipment list with suppliers is provided in Addi- temperature. tional fle 1: Supplement 1b. Driselase, 2.5% stock solution was prepared just before use. 0.25 g driselase was dissolved in 10 mL of 0.5 M Reagent setup Mannitol solution (in 15 mL falcon). After that it was d-Mannitol, 0.5 M was prepared one day before use. 9.1 g vortexed and wrapped with the aluminum foil, incubated of d-mannitol was dissolved in 100 mL of dH2O. Te pH on a shaker (40 rpm) for 30 min at 4 °C. Tis was followed Caisová and Jobe Plant Methods (2019) 15:74 Page 4 of 14 several modifcations. Te modifed version of the proto- by its centrifugation (2500 × g for 10 min) and flter steri- lization using a 0.2-μm flter. col is described in the Results. Regeneration medium 10 and 1 (RM10 and RM1) was derived from Growth medium (GM) by adding d-man- Protoplast regeneration nitol and calcium chloride (Table 1). Teir names refer Te protocol for protoplast regeneration in liquid to the fnal concentration of calcium chloride. For RM10, medium was developed in three steps. 10 mL of Stock solution 1 was mixed with 196.6 μL of Stock solution 2. For RM1, 9 mL of Stock solution 1 was 1. Regeneration Medium (RM). GM was supplemented mixed with 1 mL of RM10. Te media and stock solu- with mannitol for osmotic stabilisation of proto- tions can be stored at 4 °C for at least 2 weeks. plasts and with calcium chloride to promote cell wall regeneration and subsequent division. Te optimal Draparnaldia origin concentration of mannitol was determined stepwise. Te algal strain used in this study was Draparnaldia sp. Initially, Draparnaldia flaments were exposed to dif- CCAC 6921. Te strain originates from a dry bank of the ferent concentrations of mannitol
Recommended publications
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Molecular Phylogeny and Taxonomic Revision of Chaetophoralean Algae (Chlorophyta)
    University of South Bohemia in České Budějovice Faculty of Science Molecular phylogeny and taxonomic revision of chaetophoralean algae (Chlorophyta) Ph.D. Thesis Mgr. Lenka Caisová Supervisor RNDr. Jiří Neustupa, Ph.D. Department of Botany, Faculty of Sciences, Charles University in Prague Formal supervisor Prof. RNDr. Jiří Komárek, DrSc. University of South Bohemia, Faculty of Science, Institute of Botany, Academy of Sciences, Třeboň Consultants Prof. Dr. Michael Melkonian Biozentrum Köln, Botanisches Institut, Universität zu Köln, Germany Mgr. Pavel Škaloud, Ph.D. Department of Botany, Faculty of Sciences, Charles University in Prague České Budějovice, 2011 Caisová, L. 2011: Molecular phylogeny and taxonomic revision of chaetophoralean algae (Chlorophyta). PhD. Thesis, composite in English. University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic, 110 pp, shortened version 30 pp. Annotation Since the human inclination to estimate and trace natural diversity, usable species definitions as well as taxonomical systems are required. As a consequence, the first proposed classification schemes assigned the filamentous and parenchymatous taxa to the green algal order Chaetophorales sensu Wille. The introduction of ultrastructural and molecular methods provided novel insight into algal evolution and generated taxonomic revisions based on phylogenetic inference. However, until now, the number of molecular phylogenetic studies focusing on the Chaetophorales s.s. is surprisingly low. To enhance knowledge about phylogenetic
    [Show full text]
  • Chloroplast Phylogenomic Analysis of Chlorophyte Green Algae Identifies a Novel Lineage Sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T
    Lemieux et al. BMC Evolutionary Biology (2015) 15:264 DOI 10.1186/s12862-015-0544-5 RESEARCHARTICLE Open Access Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T. Vincent, Aurélie Labarre, Christian Otis and Monique Turmel Abstract Background: The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. Results: To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Cryogenian Glacial Habitats As a Plant Terrestrialization Cradle – the Origin of Anydrophyta and Zygnematophyceae Split
    Cryogenian glacial habitats as a plant terrestrialization cradle – the origin of Anydrophyta and Zygnematophyceae split Jakub Žárský1*, Vojtěch Žárský2,3, Martin Hanáček4,5, Viktor Žárský6,7 1CryoEco research group, Department of Ecology, Faculty of Science, Charles University, Praha, Czechia 2Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada 3Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czechia 4Polar-Geo-Lab, Department of Geography, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czechia 5Regional Museum in Jeseník, Zámecké náměstí 1, 790 01 Jeseník, Czechia 6Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia 7Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia * Correspondence: [email protected] Keywords: Plant evolution, Cryogenian glaciation, Streptophyta, Charophyta, Anydrophyta, Zygnematophyceae, Embryophyta, Snowball Earth. Abstract For tens of millions of years (Ma) the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 to 635 Ma before present - Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants, but on a comprehensive set of eukaryotes, indicate within the Streptophyta, multicellular Charophyceae evolved
    [Show full text]
  • Some Chaetophorales from Hartala Lake, Maharashtra J
    Recent Research in Science and Technology 2011, 3(5): 75-79 ISSN: 2076-5061 www.recent-science.com BOTANY SOME CHAETOPHORALES FROM HARTALA LAKE, MAHARASHTRA ∗ J. S. Dhande1 and A. K. Jawale2 1Department of Botany, Smt P.K. Kotecha Mahila Mahavidyalaya, Bhusawal 425201, District- Jalgaon (M.S.), India 2P.G. Research Center, Department of Botany, Dhanaji Nana Mahavidyalaya, Faizpur-425503, District- Jalgaon (M.S.), India Abstract Present communication deals with ten taxa of different genera of Chaetophorales as Stigeoclonium Kuetz., Chaetophora Schrank, Aphanochaete A. Braun, Protococcus Agardh, Chaetopeltis Berthold, Coleochaete Brebisson, and Chaetosphaeridium Klebahn. Out of which Stigeoclonium farcatum Berth. S. variabile (Naegeli) Islam, Chaetophora attenuata Hazen, Chaetopeltis orbicularis Berthold f.minor Moebius are for the first time reported from Maharashtra while Stigeoclonium subsecundum (Kuetz.) Kuetz. var. tenue Nordst. emend. for the first time recorded from India. Keywords: Chaetophorales, Hartala lake Introduction Hartala lake is one of the oldest lake located on Stigeoclonium farctum Berth (Pl. 2,Figs. 1-4, Pl. 3, a small tributary of river Tapi at latitude 21° 00’20.56” Fig. 1) (Sankaran, 2005.) north and longitudes 76° 01’31.31” east. The lake has Plant epiphytic, bright green in colour, young a capacity of 140 millions of cubic feet water and plants having both prostrate and erect systems; commands an area of 584 acres. Present investigation prostrate system cushion like; cells barrel shaped, includes 10 taxa of Chaetophorales
    [Show full text]
  • (Chaetophoraceae; Chlorophyta) in Culture
    Actaßot. Neerl. 145-149. 33(2),May 1984, p, Morphological growth response of Draparnaldia (Chaetophoraceae; Chlorophyta) in culture G.M. Lokhorst Rijksherbarium, Schelpenkade6,2313 ZT Leiden Draparnaldia Bory is a genus of branched filamentous green algae which em- braces about 20 species. Its distributional pattern includes stable to ephemeral fresh water habitats including acid or alkaline conditions. It is sensitive to pollu- to be for the of natural fresh tion, hence it appears appropriate typification water systems. For example, in the saprobic system of Fjerdingstad (1964) Draparnaldia glomerata is employed as a biological indicator of oligosaprobic waters, while Draparnaldia plumosa defines water of katharobic status. Based ultrastructural with Stigeoclonium, on, e.g., grounds Draparnaldia together Fritschiella and Uronema constitute the very homogeneous Chaetophoraceae al. in (Barker & Lokhorst in press, Lokhorst et press). In its natural habitat, the alga demonstrates a conspicuous main axis con- cells from which alternate sisting of barrel-shaped or cylindrical opposite, or whorled fascicles of setiferous branchlets project (Prescott 1951). However, when this alga is brought into culture, its phenotypic plasticity is expressed by loss in to main rise to a gradual ability produce axes, thereby giving a Stigeoclo- nium-like growth habit (e.g., Carroll & Deason 1969; personal observations). Several experimental studies attempted to decipher the causes of this poly- morphism in Draparnaldia. Uspenskaja (1930) concluded that an increase of the nitrate level, both in natural environment and in culture, accounts for the morphological change in Draparnaldia. In additional studies, Suomalainen that an increase of both and C0 -concentration (1933) reported light intensity 2 promotes main axis development, the frequency ofbranching and the formation of setae in this alga.
    [Show full text]
  • Green Algae Secondary Article
    Green Algae Secondary article Mark A Buchheim, University of Tulsa, Tulsa, Oklahoma, USA Article Contents . Introduction The green algae comprise a large and diverse group of organisms that range from the . Major Groups microscopic to the macroscopic. Green algae are found in virtually all aquatic and some . Economic and Ecological Importance terrestrial habitats. Introduction generalization). The taxonomic and phylogenetic status of The green algae comprise a large and diverse group of the green plant group is supported by both molecular and organisms that range from the microscopic (e.g. Chlamy- nonmolecular evidence (Graham, 1993; Graham and domonas) to the macroscopic (e.g. Acetabularia). In Wilcox, 2000). This group of green organisms has been addition to exhibiting a considerable range of structural termed the Viridaeplantae or Chlorobionta. Neither the variability, green algae are characterized by extensive euglenoids nor the chlorarachniophytes, both of which ecological diversity. Green algae are found in virtually all have apparently acquired a green chloroplast by a aquatic (both freshwater and marine) and some terrestrial secondary endosymbiosis, are included in the green plant habitats. Although most are free-living, a number of green lineage (Graham and Wilcox, 2000). Furthermore, the algae are found in symbiotic associations with other Chloroxybacteria (e.g. Prochloron), which possess chlor- organisms (e.g. the lichen association between an alga ophyll a and b organized on thylakoids, are true and a fungus). Some green algae grow epiphytically (e.g. prokaryotes, and are not, therefore, included in the green Characiochloris, which grows on other filamentous algae plant lineage. The green algal division Chlorophyta forms or higher aquatic plants), epizoically (e.g.
    [Show full text]
  • 7 Systematics of the Green Algae
    7989_C007.fm Page 123 Monday, June 25, 2007 8:57 PM Systematics of the green 7 algae: conflict of classic and modern approaches Thomas Pröschold and Frederik Leliaert CONTENTS Introduction ....................................................................................................................................124 How are green algae classified? ........................................................................................125 The morphological concept ...............................................................................................125 The ultrastructural concept ................................................................................................125 The molecular concept (phylogenetic concept).................................................................131 Classic versus modern approaches: problems with identification of species and genera.....................................................................................................................134 Taxonomic revision of genera and species using polyphasic approaches....................................139 Polyphasic approaches used for characterization of the genera Oogamochlamys and Lobochlamys....................................................................................140 Delimiting phylogenetic species by a multi-gene approach in Micromonas and Halimeda .....................................................................................................................143 Conclusions ....................................................................................................................................144
    [Show full text]
  • Shoreline Algae of Western Lake Erie1
    THE OHIO JOURNAL OF SCIENCE Vol. 70 SEPTEMBER, 1970 ' No. 5 SHORELINE ALGAE OF WESTERN LAKE ERIE1 RACHEL COX DOWNING2 Graduate Studies in Botany, The Ohio State University, Columbus, Ohio J/.3210 ABSTRACT The algae of western Lake Erie have been extensively studied for more than 70 years, but, until the present study by the author, conducted between April and October, 1967, almost nothing was known of the shoreline as a specific algal habitat. A total of 61 taxa were identified from the shorelines. The importance of this habitat is very clear from the results of this study, for, of the 61 taxa found, 39 are new records for western Lake Erie, and one, Arnoldiella conchophila Miller, appears to be a new United States record, having been previously reported only from central Russia. Western Lake Erie has been the site of extensive phycological research since 1898. After some 70 years of algal study, it would be reasonable to assume that all the various habitats would have been thoroughly studied and reported on, but when reports of research were compiled by Dr. Clarence E. Taft for a taxonomic summary, it became apparent that the shoreline had been neglected. Considerable information on the algae of the ponds, marshes, swamps, quarry ponds, open lake, inlets, ditches, and canals has been reported on by individuals and by agencies doing research, and by the algae classes at the Franz Theodore Stone Laboratory, Put-in-Bay, Ohio. Papers containing this information are by Jennings (1900), Pieters (1902), Snow (1902), Stehle (1923), Tiffany and Ahlstrom (1931), Ahlstrom and Tiffany (1934), Tiffany (1934 and 1937), Chandler (1940), Taft (1940 and 1942), Daily (1942 and 1945), Taft (1945 and 1946), Wood (1947), Curl (1951), McMilliam (1951), Verduin (1952), Wright (1955), Normanden and Taft (1959), Taft (1964a and 1964b), and Taft and Kishler (1968).
    [Show full text]
  • The Occurrence of the Green Alga Prododerma Viride (Chlorophyceae) in Michigan
    2017 THE GREAT LAKES BOTANIST 201 THE OCCURRENCE OF THE GREEN ALGA PRODODERMA VIRIDE (CHLOROPHYCEAE) IN MICHIGAN Daniel E. Wujek Department of Biology Central Michigan University Mt. Pleasant, MI 48859 ABSTRACT The epiphytic branched filamentous green alga Protoderma viride is reported from Michigan for the first time. An alga occurring worldwide, its only other report for the Great Lakes region is from Wisconsin. Using light microscopy it was observed from numerous strata from one Upper Peninsula site and several Lower Peninsula locations. INTRODUCTION The widely occurring green algal genus Protoderma K¸tzing has been re - ported from all seven continents and the Pacific Ocean islands (Burova et al. 2011, Guiry 2016). Of the nine species currently accepted taxonomically (six freshwater, three marine; Guiry 2016) only the species Protoderma viride K¸tzing has been reported from as many as six continents, though it is not known from Antarctica. Considering that it is the most widely distributed species of Protoderma (Guiry 2016), it is surprising that it has never been reported from Michigan. The only previous record of its occurrence from the Great Lakes re - gion is from Wisconsin (Prescott 1962). METHODS AND MATERIALS More than 30 samples containing Protoderma viride were collected throughout Michigan over a 32-years period (summer months 1971ñ2002). The environments from which the collections were taken ranged from lotic to lentic and from shaded to bright light. Protoderma viride K¸tzing was found variously on rocks, pebbles, and macrophytes (e.g., Potamogeton spp., Sagittaria spp., Typha latifolia, and Valisneria americana) or other filamentous algae (e.g., Chaetophora spp., Cladophora glomerata, Oedogonium spp., and Rhizoclonium).
    [Show full text]
  • Stream Periphyton Monitoring Manual Stream Periphyton Monitoring Manual
    Stream Periphyton Monitoring Manual Stream Periphyton Monitoring Manual Prepared for The New Zealand Ministry for the Environment by Barry J. F. Biggs Cathy Kilroy NIWA, Christchurch Published by: NIWA, P.O. Box 8602, Christchurch, New Zealand (Phone: 03 348 8987 Fax: 03 348 5548) for the New Zealand Ministry for the Environment ISBN 0-478-09099-4 Stream Periphyton Monitoring Manual Biggs, B.J.F. Kilroy, C. © The Crown (acting through the Minister for the Environment), 2000. Copyright exists in this work in accordance with the Copyright Act 1994. However, the Crown authorises and grants a licence for the copying, adaptation and issuing of this work for any non-profit purpose. All applications for reproduction of this work for any other purpose should be made to the Ministry for the Environment. Stream Periphyton Monitoring Manual Contents Summary of figures ....................................................................................................................................vi Summary of tables ................................................................................................................................... viii Acknowledgements ..................................................................................................................................... x 1 Introduction ...................................................................................................................................... 1 1.1 Background ...........................................................................................................................
    [Show full text]