Stream Periphyton Monitoring Manual Stream Periphyton Monitoring Manual

Total Page:16

File Type:pdf, Size:1020Kb

Stream Periphyton Monitoring Manual Stream Periphyton Monitoring Manual Stream Periphyton Monitoring Manual Stream Periphyton Monitoring Manual Prepared for The New Zealand Ministry for the Environment by Barry J. F. Biggs Cathy Kilroy NIWA, Christchurch Published by: NIWA, P.O. Box 8602, Christchurch, New Zealand (Phone: 03 348 8987 Fax: 03 348 5548) for the New Zealand Ministry for the Environment ISBN 0-478-09099-4 Stream Periphyton Monitoring Manual Biggs, B.J.F. Kilroy, C. © The Crown (acting through the Minister for the Environment), 2000. Copyright exists in this work in accordance with the Copyright Act 1994. However, the Crown authorises and grants a licence for the copying, adaptation and issuing of this work for any non-profit purpose. All applications for reproduction of this work for any other purpose should be made to the Ministry for the Environment. Stream Periphyton Monitoring Manual Contents Summary of figures ....................................................................................................................................vi Summary of tables ................................................................................................................................... viii Acknowledgements ..................................................................................................................................... x 1 Introduction ...................................................................................................................................... 1 1.1 Background ............................................................................................................................ 1 1.2 Purpose and scope ................................................................................................................ 1 2 Design of sampling programmes: “begin with the end in mind” ......................................... 3 2.1 Introduction ........................................................................................................................... 3 2.2 Types of sampling programmes ......................................................................................... 3 2.3 Defining your objectives ...................................................................................................... 3 2.4 Issues of scale ........................................................................................................................ 5 2.5 Examples of setting objectives and carrying out a sampling programme ................... 6 2.6 Reference sites ..................................................................................................................... 12 2.7 Maximising information for the available budget ......................................................... 13 3 Determining data precision and number of sampling replicates required ........................ 16 3.1 Background .......................................................................................................................... 16 3.2 Measures of variability ......................................................................................................17 3.3 Estimating the number of replicate samples needed for general resource surveys ................................................................................................................. 17 3.4 Estimating the number of replicate samples required for testing hypotheses of differences in two population means for periphyton biomonitoring and consent evaluation ..............................................................................................................20 3.5 Estimating number of replicate samples required for testing hypotheses regarding compliance with periphyton cover or biomass guidelines ........................ 22 3.6 Stratifying sampling effort to increase precision and reduce effort ............................ 24 3.7 Estimating the number of replicate samples required and level of differences in testing effects: a cautionary note .............................................................. 25 4 Specific considerations in planning studies ............................................................................. 26 4.1 Resource surveys ................................................................................................................ 26 4.2 Impact assessments ............................................................................................................ 28 4.3 State of the Environment monitoring .............................................................................. 31 4.4 Some practical considerations before you start your study ......................................... 33 5 Common New Zealand stream habitats and their periphyton communities .................... 34 5.1 Spring-fed streams .............................................................................................................. 34 5.2 Lake-fed streams ................................................................................................................. 34 5.3 Wetland-fed streams ........................................................................................................... 35 5.4 Low-altitude streams.......................................................................................................... 35 iii Stream Periphyton Monitoring Manual 5.5 Hill-country-fed streams .................................................................................................... 36 5.6 Non-glacial mountain streams.......................................................................................... 37 5.7 Glacial mountain streams .................................................................................................. 37 5.8 Streams regulated by dams ............................................................................................... 38 6 Field procedures ............................................................................................................................. 39 6.1 General ................................................................................................................................. 39 6.2 Location of sites................................................................................................................... 39 6.3 Site records ........................................................................................................................... 40 6.4 Rapid assessment protocols .............................................................................................. 40 6.5 Quantitative protocols .......................................................................................................46 6.6 Methods for sampling periphyton on artificial substrates ........................................... 52 6.7 Nutrient limitation assays ................................................................................................. 57 6.8 Community metabolism (maximum primary productivity and community respiration) using benthic respirometry .......................................................................... 68 6.9 Sample transport, storage and registration..................................................................... 74 7 Biomass analyses ........................................................................................................................... 76 7.1 Overview of biomass analyses ......................................................................................... 76 7.2 Sample preparation ............................................................................................................ 76 7.3 Chlorophyll a ....................................................................................................................... 77 7.3.1 Equipment ........................................................................................................................... 79 7.4 Ash-free dry mass (AFDM) ............................................................................................... 85 7.5 Biomass accrual and growth rate estimates .................................................................... 91 8 Taxonomic analyses....................................................................................................................... 95 8.1 Overview of taxonomic analyses...................................................................................... 95 8.2 Sample preparation ............................................................................................................ 96 8.3 Relative abundance assessments using an inverted light microscope ....................... 97 8.4 Quantitative analysis (cell counts) using an inverted or compound microscope ......................................................................................................................... 100 8.5 Procedures for cleaning diatoms and making permanent mounts ........................... 105 8.6 Biovolume estimates ........................................................................................................ 108 8.7 QA/QC procedure for taxonomic enumerations......................................................... 108 9 Data analysis and reporting ....................................................................................................... 112 9.1 Introduction ....................................................................................................................... 112 9.2 A general philosophy for data analysis ........................................................................
Recommended publications
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Molecular Phylogeny and Taxonomic Revision of Chaetophoralean Algae (Chlorophyta)
    University of South Bohemia in České Budějovice Faculty of Science Molecular phylogeny and taxonomic revision of chaetophoralean algae (Chlorophyta) Ph.D. Thesis Mgr. Lenka Caisová Supervisor RNDr. Jiří Neustupa, Ph.D. Department of Botany, Faculty of Sciences, Charles University in Prague Formal supervisor Prof. RNDr. Jiří Komárek, DrSc. University of South Bohemia, Faculty of Science, Institute of Botany, Academy of Sciences, Třeboň Consultants Prof. Dr. Michael Melkonian Biozentrum Köln, Botanisches Institut, Universität zu Köln, Germany Mgr. Pavel Škaloud, Ph.D. Department of Botany, Faculty of Sciences, Charles University in Prague České Budějovice, 2011 Caisová, L. 2011: Molecular phylogeny and taxonomic revision of chaetophoralean algae (Chlorophyta). PhD. Thesis, composite in English. University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic, 110 pp, shortened version 30 pp. Annotation Since the human inclination to estimate and trace natural diversity, usable species definitions as well as taxonomical systems are required. As a consequence, the first proposed classification schemes assigned the filamentous and parenchymatous taxa to the green algal order Chaetophorales sensu Wille. The introduction of ultrastructural and molecular methods provided novel insight into algal evolution and generated taxonomic revisions based on phylogenetic inference. However, until now, the number of molecular phylogenetic studies focusing on the Chaetophorales s.s. is surprisingly low. To enhance knowledge about phylogenetic
    [Show full text]
  • Microvegetation on the Top of Mt. Roraima, Venezuela
    Fottea 11(1): 171–186, 2011 171 Microvegetation on the top of Mt. Roraima, Venezuela Jan KA š T O V S K Ý 1*, Karolina Fu č í k o v á 2, Tomáš HAUER 1,3 & Markéta Bo h u n i c k á 1 1Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic; *e–mail: [email protected] 2University of Connecticut, Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269–3043, U.S.A. 3Institute of Botany of the Academy of Sciences, Czech Republic, Dukelská 135, Třeboň 37982, Czech Republic. Abstract: Venezuelan Table Mountains (tepuis) are among world’s most unique ecological systems and have been shown to have high incidence of endemics. The top of Roraima, the highest Venezuelan tepui, represents an isolated enclave of species without any contact with the surrounding landscape. Daily precipitation enables algae and cyanobacteria to cover the otherwise bare substrate surfaces on the summit in form of a black biofilm. In the present study, 139 samples collected over 4 years from various biotopes (vertical and horizontal moist rock walls, small rock pools, peat bogs, and small streams and waterfalls) were collected and examined for algal diversity and species composition. A very diverse algal flora was recognized in the habitats of the top of Mt. Roraima; 96 Bacillariophyceae, 44 Cyanobacteria including two species new to science, 37 Desmidiales, 5 Zygnematales, 6 Chlorophyta, 1 Klebsormidiales, 1 Rhodophyta, 1 Dinophyta, and 1 Euglenophyta were identified. Crucial part of the total biomass consisted of Cyanobacteria; other significantly represented groups were Zygnematales and Desmidiales.
    [Show full text]
  • Chloroplast Phylogenomic Analysis of Chlorophyte Green Algae Identifies a Novel Lineage Sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T
    Lemieux et al. BMC Evolutionary Biology (2015) 15:264 DOI 10.1186/s12862-015-0544-5 RESEARCHARTICLE Open Access Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T. Vincent, Aurélie Labarre, Christian Otis and Monique Turmel Abstract Background: The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. Results: To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Cryogenian Glacial Habitats As a Plant Terrestrialization Cradle – the Origin of Anydrophyta and Zygnematophyceae Split
    Cryogenian glacial habitats as a plant terrestrialization cradle – the origin of Anydrophyta and Zygnematophyceae split Jakub Žárský1*, Vojtěch Žárský2,3, Martin Hanáček4,5, Viktor Žárský6,7 1CryoEco research group, Department of Ecology, Faculty of Science, Charles University, Praha, Czechia 2Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada 3Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czechia 4Polar-Geo-Lab, Department of Geography, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czechia 5Regional Museum in Jeseník, Zámecké náměstí 1, 790 01 Jeseník, Czechia 6Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia 7Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia * Correspondence: [email protected] Keywords: Plant evolution, Cryogenian glaciation, Streptophyta, Charophyta, Anydrophyta, Zygnematophyceae, Embryophyta, Snowball Earth. Abstract For tens of millions of years (Ma) the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 to 635 Ma before present - Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants, but on a comprehensive set of eukaryotes, indicate within the Streptophyta, multicellular Charophyceae evolved
    [Show full text]
  • Some Chaetophorales from Hartala Lake, Maharashtra J
    Recent Research in Science and Technology 2011, 3(5): 75-79 ISSN: 2076-5061 www.recent-science.com BOTANY SOME CHAETOPHORALES FROM HARTALA LAKE, MAHARASHTRA ∗ J. S. Dhande1 and A. K. Jawale2 1Department of Botany, Smt P.K. Kotecha Mahila Mahavidyalaya, Bhusawal 425201, District- Jalgaon (M.S.), India 2P.G. Research Center, Department of Botany, Dhanaji Nana Mahavidyalaya, Faizpur-425503, District- Jalgaon (M.S.), India Abstract Present communication deals with ten taxa of different genera of Chaetophorales as Stigeoclonium Kuetz., Chaetophora Schrank, Aphanochaete A. Braun, Protococcus Agardh, Chaetopeltis Berthold, Coleochaete Brebisson, and Chaetosphaeridium Klebahn. Out of which Stigeoclonium farcatum Berth. S. variabile (Naegeli) Islam, Chaetophora attenuata Hazen, Chaetopeltis orbicularis Berthold f.minor Moebius are for the first time reported from Maharashtra while Stigeoclonium subsecundum (Kuetz.) Kuetz. var. tenue Nordst. emend. for the first time recorded from India. Keywords: Chaetophorales, Hartala lake Introduction Hartala lake is one of the oldest lake located on Stigeoclonium farctum Berth (Pl. 2,Figs. 1-4, Pl. 3, a small tributary of river Tapi at latitude 21° 00’20.56” Fig. 1) (Sankaran, 2005.) north and longitudes 76° 01’31.31” east. The lake has Plant epiphytic, bright green in colour, young a capacity of 140 millions of cubic feet water and plants having both prostrate and erect systems; commands an area of 584 acres. Present investigation prostrate system cushion like; cells barrel shaped, includes 10 taxa of Chaetophorales
    [Show full text]
  • Chlorophyta, Ulvophyceae
    Neerl. Acta Bot. 36(1),February 1987, p. 3-11 Septum formation in the green alga Ulothrix palusalsa (Chlorophyta, Ulvophyceae) P.J. Segaar and G.M. Lokhorst Rijksherbarium, Schelpenkade 6, P.O. Box 9514,2300RA LEIDEN, The Netherlands SUMMARY The ultrastructure ofcell division, with the emphasis on septum formation,is described in the ulvo- Ulothrix Lokhorst. formation involves furrow which phycean green alga palusalsa Septum a cleavage is initiated before the onset of mitosis. The developmentof the cleavage furrow is most pronounced at the final mitotic stages when it shows aserial arrangement ofalternating thickened and flattened parts. Especially in the chloroplast region, a hoop of microtubules is sometimes associated with the leadingedge ofthe cleavage furrow. 1. INTRODUCTION In spermatophytes, cytokinesis is affected by centrifugal growth of a septum, in association with microtubular which develops from fusing Golgi-vesicles a system, the phragmoplast (see review of Gunning 1982). A similar cell plate/ phragmoplast system is also found in mosses, ferns, and in some charophycean green algae (for examples, see Pickett-Heaps 1975). In chaetophoralean green algae a Golgi-derived cell plate is associated with a system of transversally aligned microtubules(MTs), the phycoplast (Pickett-Heaps 1972). Many other do not cell but green algae, however, produce a centrifugally developing plate, of the membrane instead a centripetally developing invagination plasma (clea- another for chlorococ- vage furrow). Recently, cytokinetic system was suggested calean and ‘pseudo-filamentous’ green algae (Sluiman 1984, 1985), in which the endoplasmic reticulum would contribute directly to the formation of the plasma membrane, thus ‘bypassing’ the Golgi apparatus. In the green algal class Ulvophyceae {sensu O’Kelly& Floyd 1984) cytokine- sis seems to be accomplished by a cleavage furrow which is not associated with amicrotubular system.
    [Show full text]
  • An Unrecognized Ancient Lineage of Green Plants Persists in Deep Marine Waters
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2010 Phycological Society of America. This manuscript is an author version with the final publication available at http://www.wiley.com/WileyCDA/ and may be cited as: Zechman, F. W., Verbruggen, H., Leliaert, F., Ashworth, M., Buchheim, M. A., Fawley, M. W., Spalding, H., Pueschel, C. M., Buchheim, J. A., Verghese, B., & Hanisak, M. D. (2010). An unrecognized ancient lineage of green plants persists in deep marine waters. Journal of Phycology, 46(6), 1288‐1295. (Suppl. material). doi:10.1111/j.1529‐8817.2010.00900.x J. Phycol. 46, 1288–1295 (2010) Ó 2010 Phycological Society of America DOI: 10.1111/j.1529-8817.2010.00900.x AN UNRECOGNIZED ANCIENT LINEAGE OF GREEN PLANTS PERSISTS IN DEEP MARINE WATERS1 Frederick W. Zechman2,3 Department of Biology, California State University Fresno, 2555 East San Ramon Ave, Fresno, California 93740, USA Heroen Verbruggen,3 Frederik Leliaert Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium Matt Ashworth University Station MS A6700, 311 Biological Laboratories, University of Texas at Austin, Austin, Texas 78712, USA Mark A. Buchheim Department of Biological Science, University of Tulsa, Tulsa, Oklahoma 74104, USA Marvin W. Fawley School of Mathematical and Natural Sciences, University of Arkansas at Monticello, Monticello, Arkansas 71656, USA Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58105, USA Heather Spalding Botany Department, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA Curt M. Pueschel Department of Biological Sciences, State University of New York at Binghamton, Binghamton, New York 13901, USA Julie A.
    [Show full text]
  • (Chaetophoraceae; Chlorophyta) in Culture
    Actaßot. Neerl. 145-149. 33(2),May 1984, p, Morphological growth response of Draparnaldia (Chaetophoraceae; Chlorophyta) in culture G.M. Lokhorst Rijksherbarium, Schelpenkade6,2313 ZT Leiden Draparnaldia Bory is a genus of branched filamentous green algae which em- braces about 20 species. Its distributional pattern includes stable to ephemeral fresh water habitats including acid or alkaline conditions. It is sensitive to pollu- to be for the of natural fresh tion, hence it appears appropriate typification water systems. For example, in the saprobic system of Fjerdingstad (1964) Draparnaldia glomerata is employed as a biological indicator of oligosaprobic waters, while Draparnaldia plumosa defines water of katharobic status. Based ultrastructural with Stigeoclonium, on, e.g., grounds Draparnaldia together Fritschiella and Uronema constitute the very homogeneous Chaetophoraceae al. in (Barker & Lokhorst in press, Lokhorst et press). In its natural habitat, the alga demonstrates a conspicuous main axis con- cells from which alternate sisting of barrel-shaped or cylindrical opposite, or whorled fascicles of setiferous branchlets project (Prescott 1951). However, when this alga is brought into culture, its phenotypic plasticity is expressed by loss in to main rise to a gradual ability produce axes, thereby giving a Stigeoclo- nium-like growth habit (e.g., Carroll & Deason 1969; personal observations). Several experimental studies attempted to decipher the causes of this poly- morphism in Draparnaldia. Uspenskaja (1930) concluded that an increase of the nitrate level, both in natural environment and in culture, accounts for the morphological change in Draparnaldia. In additional studies, Suomalainen that an increase of both and C0 -concentration (1933) reported light intensity 2 promotes main axis development, the frequency ofbranching and the formation of setae in this alga.
    [Show full text]
  • Green Algae Secondary Article
    Green Algae Secondary article Mark A Buchheim, University of Tulsa, Tulsa, Oklahoma, USA Article Contents . Introduction The green algae comprise a large and diverse group of organisms that range from the . Major Groups microscopic to the macroscopic. Green algae are found in virtually all aquatic and some . Economic and Ecological Importance terrestrial habitats. Introduction generalization). The taxonomic and phylogenetic status of The green algae comprise a large and diverse group of the green plant group is supported by both molecular and organisms that range from the microscopic (e.g. Chlamy- nonmolecular evidence (Graham, 1993; Graham and domonas) to the macroscopic (e.g. Acetabularia). In Wilcox, 2000). This group of green organisms has been addition to exhibiting a considerable range of structural termed the Viridaeplantae or Chlorobionta. Neither the variability, green algae are characterized by extensive euglenoids nor the chlorarachniophytes, both of which ecological diversity. Green algae are found in virtually all have apparently acquired a green chloroplast by a aquatic (both freshwater and marine) and some terrestrial secondary endosymbiosis, are included in the green plant habitats. Although most are free-living, a number of green lineage (Graham and Wilcox, 2000). Furthermore, the algae are found in symbiotic associations with other Chloroxybacteria (e.g. Prochloron), which possess chlor- organisms (e.g. the lichen association between an alga ophyll a and b organized on thylakoids, are true and a fungus). Some green algae grow epiphytically (e.g. prokaryotes, and are not, therefore, included in the green Characiochloris, which grows on other filamentous algae plant lineage. The green algal division Chlorophyta forms or higher aquatic plants), epizoically (e.g.
    [Show full text]