Edvard August Vainio
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomy and New Records of Graphidaceae Lichens in Western Pangasinan, Northern Philippines
PRIMARY RESEARCH PAPER | Philippine Journal of Systematic Biology DOI 10.26757/pjsb2019b13006 Taxonomy and new records of Graphidaceae lichens in Western Pangasinan, Northern Philippines Weenalei T. Fajardo1, 2* and Paulina A. Bawingan1 Abstract There are limited studies on the diversity of Philippine lichenized fungi. This study collected and determined corticolous Graphidaceae from 38 collection sites in 10 municipalities of western Pangasinan province. The study found 35 Graphidaceae species belonging to 11 genera. Graphis is the dominant genus with 19 species. Other species belong to the genera Allographa (3 species) Fissurina (3), Phaeographis (3), while Austrotrema, Chapsa, Diorygma, Dyplolabia, Glyphis, Ocellularia, and Thelotrema had one species each. This taxonomic survey added 14 new records of Graphidaceae to the flora of western Pangasinan. Keywords: Lichenized fungi, corticolous, crustose lichens, Ostropales Introduction described Graphidaceae in the country (Parnmen et al. 2012). Most recent surveys resulted in the characterization of six new Graphidaceae is the second largest family of lichenized species (Lumbsch et al. 2011; Tabaquero et al.2013; Rivas-Plata fungi (Ascomycota) (Rivas-Plata et al. 2012; Lücking et al. et al. 2014). In the northwestern part of Luzon in the Philippines 2017) and is the most speciose of tropical crustose lichens (Region 1), an account on the Graphidaceae lichens was (Staiger 2002; Lücking 2009). The inclusion of the initially conducted only from the Hundred Islands National Park (HINP), separate family Thelotremataceae (Mangold et al. 2008; Rivas- Alaminos City, Pangasinan (Bawingan et al. 2014). The study Plata et al. 2012) in the family Graphidaceae made the latter the reported 32 identified lichens, including 17 Graphidaceae dominant element of lichen communities with 2,161 accepted belonging to the genera Diorygma, Fissurina, Graphis, Thecaria species belonging to 79 genera (Lücking et al. -
Field Guide to the Ecosites of Saskatchewan's Provincial Forests
Field Guide to the Ecosites of Saskatchewan’s Provincial Forests M.S. McLaughlan, R.A. Wright, and R.D. Jiricka Library and Archives Canada Cataloguing in Publication McLaughlan, M.S. Field guide to the ecosites of Saskatchewan’s provincial forests/M.S. McLaughlan, R.A. Wright, R.D. Jiricka. Issued by: Forest Service. Available also on the Internet. Includes bibliographical references. ISBN 978-1-926841-18-2 1. Forest site quality - Saskatchewan. 2. Forest ecology - Saskatchewan. I. Wright, Robert A. (Robert Alexander), 1955- II. Jiricka, R.D., 1953- III. Saskatchewan. Forest Service IV. Saskatchewan. Ministry of Environment. V. Title QH541.5 F6 M4 2010 577.3097124 C2010-905524-1 This publication may be obtained from: Saskatchewan Ministry of Environment Forest Service Box 3003 Prince Albert, Saskatchewan S6V 6G1 General Inquiries: [email protected] An electronic copy (in Adobe Acrobat portable document format - PDF) of this document is available from: http://www.environment.gov.sk.ca/forests Front cover photo: Pitcher-plant and small bog cranberry; two species common to Saskatchewan’s wetland ecosites. Back cover photo: Juniper hair-cap moss; a common upland moss found on dry or exposed sites. Abstract McLaughlan, M.S.; Wright, R.A.; Jiricka, R.D. 2010. Field guide to the ecosites of Saskatchewan’s provincial forests. Saskatchewan Ministry of Environment, Forest Service. Prince Albert, Saskatchewan. 343 pp. Abstract The forest ecosystems of Saskatchewan are represented at the site level with 81 ecosites that span Saskatchewan’s four ecozones: Taiga Shield, Boreal Shield, Boreal Plain and Prairi e. Field sampling provided the raw data upon which the ecosite classification was built. -
And Photobiont Associations in Crustose Lichens in the Mcmurdo Dry Valleys (Antarctica) Reveal High Differentiation Along an Elevational Gradient
bioRxiv preprint doi: https://doi.org/10.1101/718262; this version posted July 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Myco- and photobiont associations in crustose lichens in the McMurdo Dry Valleys (Antarctica) reveal high differentiation along an elevational gradient Monika Wagner1, Arne C. Bathke2, Craig Cary3,4, Robert R. Junker1, Wolfgang Trutschnig2, Ulrike Ruprecht1 1Department of Biosciences, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria 2Department of Mathematics, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria 3School of Science, The University of Waikato, Hamilton, New Zealand 4The International Centre for Terrestrial Antarctic Research, The University of Waikato, Hamilton, New Zealand Corresponding Author: Ulrike Ruprecht, [email protected], 0043-662-80445519, ORCID 0000-0002-0898-7677 Abstract The climate conditions of the McMurdo Dry Valleys (78° S) are characterized by low temperatures and low precipitation. The annual temperatures at the valley bottoms have a mean range from -30 °C to -15 °C and decrease with elevation. Precipitation occurs mostly in form of snow (3-50 mm a-1 water equivalent) and, liquid water is rare across much of the landscape for most of the year and represents the primary limitation to biological activity. Snow delivered off the polar plateau by drainage winds, dew and humidity provided by clouds and fog are important water sources for rock inhibiting crustose lichens. In addition, the combination of the extremely low humidity and drying caused by foehn winds, confined to lower areas of the valleys, with colder and moister air at higher altitudes creates a strongly improving water availability gradient with elevation. -
Cuivre Bryophytes
Trip Report for: Cuivre River State Park Species Count: 335 Date: Multiple Visits Lincoln County Agency: MODNR Location: Lincoln Hills - Bryophytes Participants: Bryophytes from Natural Resource Inventory Database Bryophyte List from NRIDS and Bruce Schuette Species Name (Synonym) Common Name Family COFC COFW Acarospora unknown Identified only to Genus Acarosporaceae Lichen Acrocordia megalospora a lichen Monoblastiaceae Lichen Amandinea dakotensis a button lichen (crustose) Physiaceae Lichen Amandinea polyspora a button lichen (crustose) Physiaceae Lichen Amandinea punctata a lichen Physiaceae Lichen Amanita citrina Citron Amanita Amanitaceae Fungi Amanita fulva Tawny Gresette Amanitaceae Fungi Amanita vaginata Grisette Amanitaceae Fungi Amblystegium varium common willow moss Amblystegiaceae Moss Anisomeridium biforme a lichen Monoblastiaceae Lichen Anisomeridium polypori a crustose lichen Monoblastiaceae Lichen Anomodon attenuatus common tree apron moss Anomodontaceae Moss Anomodon minor tree apron moss Anomodontaceae Moss Anomodon rostratus velvet tree apron moss Anomodontaceae Moss Armillaria tabescens Ringless Honey Mushroom Tricholomataceae Fungi Arthonia caesia a lichen Arthoniaceae Lichen Arthonia punctiformis a lichen Arthoniaceae Lichen Arthonia rubella a lichen Arthoniaceae Lichen Arthothelium spectabile a lichen Uncertain Lichen Arthothelium taediosum a lichen Uncertain Lichen Aspicilia caesiocinerea a lichen Hymeneliaceae Lichen Aspicilia cinerea a lichen Hymeneliaceae Lichen Aspicilia contorta a lichen Hymeneliaceae Lichen -
Global Biodiversity Patterns of the Photobionts Associated with the Genus Cladonia (Lecanorales, Ascomycota)
Microbial Ecology https://doi.org/10.1007/s00248-020-01633-3 FUNGAL MICROBIOLOGY Global Biodiversity Patterns of the Photobionts Associated with the Genus Cladonia (Lecanorales, Ascomycota) Raquel Pino-Bodas1 & Soili Stenroos2 Received: 19 August 2020 /Accepted: 22 October 2020 # The Author(s) 2020 Abstract The diversity of lichen photobionts is not fully known. We studied here the diversity of the photobionts associated with Cladonia, a sub-cosmopolitan genus ecologically important, whose photobionts belong to the green algae genus Asterochloris. The genetic diversity of Asterochloris was screened by using the ITS rDNA and actin type I regions in 223 specimens and 135 species of Cladonia collected all over the world. These data, added to those available in GenBank, were compiled in a dataset of altogether 545 Asterochloris sequences occurring in 172 species of Cladonia. A high diversity of Asterochloris associated with Cladonia was found. The commonest photobiont lineages associated with this genus are A. glomerata, A. italiana,andA. mediterranea. Analyses of partitioned variation were carried out in order to elucidate the relative influence on the photobiont genetic variation of the following factors: mycobiont identity, geographic distribution, climate, and mycobiont phylogeny. The mycobiont identity and climate were found to be the main drivers for the genetic variation of Asterochloris. The geographical distribution of the different Asterochloris lineages was described. Some lineages showed a clear dominance in one or several climatic regions. In addition, the specificity and the selectivity were studied for 18 species of Cladonia. Potentially specialist and generalist species of Cladonia were identified. A correlation was found between the sexual reproduction frequency of the host and the frequency of certain Asterochloris OTUs. -
Opuscula Philolichenum, 8: 1-7. 2010
Opuscula Philolichenum, 8: 1-7. 2010. A brief lichen foray in the Mount Washington alpine zone – including Claurouxia chalybeioides, Porina norrlinii and Stereocaulon leucophaeopsis new to North America 1 ALAN M. FRYDAY ABSTRACT. – A preliminary investigation of the lichen biota of Mt. Washington (New Hampshire) is presented based on two days spent on the mountain in August 2008. Claurouxia chalybeioides, Porina norrlinii and Stereocaulon leucophaeopsis are reported for the first time from North America and Frutidella caesioatra is reported for the first time from the United States. A full list of the species recorded during the visit is also presented. INTRODUCTION Mt. Washington, at 1918 m, is the highest peak in northeast North America and has the most alpine tundra of any site in the eastern United States. In spite of this, its lichen biota is very poorly documented with the only published accounts to specifically mention Mt. Washington or the White Mountains by name obtained from the Recent Literature on Lichens web-site (Culberson et al. 2009), which includes all lichenological references since 1536, being an early work by Farlow (1884), and the ecological work by Bliss (1963, 1966), which included a few macrolichens. However, the mountain was a favorite destination of Edward Tuckerman and many records can be extracted from his published taxonomic works (e.g., Tuckerman 1845, 1847, 1882, 1888). More recently Richard Harris and William Buck of the New York Botanical Garden, and Clifford Wetmore of the University of Minnesota have collected lichens on the mountain. Their records have not been published, although the report Wetmore produced for the U.S. -
Gymnoderma Insulare
The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T58520980A58520984 Gymnoderma insulare Assessment by: Ohmura, Y., Nadyeina, O. & Scheidegger, C. View on www.iucnredlist.org Citation: Ohmura, Y., Nadyeina, O. & Scheidegger, C. 2014. Gymnoderma insulare. The IUCN Red List of Threatened Species 2014: e.T58520980A58520984. http://dx.doi.org/10.2305/IUCN.UK.2014- 3.RLTS.T58520980A58520984.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Fungi Ascomycota Lecanoromycetes Lecanorales Cladoniaceae Taxon Name: Gymnoderma insulare Yoshim. & Sharp Taxonomic Notes: This attractive macrolichen is easy to recognize by lichen specialists. -
The Revision of Specimens of the Cladonia Pyxidata-Chlorophaea Group
Acta Mycologica DOI: 10.5586/am.1087 ORIGINAL RESEARCH PAPER Publication history Received: 2016-04-02 Accepted: 2016-12-21 The revision of specimens of the Cladonia Published: 2017-01-16 pyxidata-chlorophaea group (lichenized Handling editor Maria Rudawska, Institute of Dendrology, Polish Academy of Ascomycota) from northeastern Poland Sciences, Poland deposited in the herbarium collections of Funding Research funded by the Polish University in Bialystok Ministry of Science and Higher Education within the statutory research. Anna Matwiejuk* Competing interests Department of Plant Ecology, Institute of Biology, University of Bialystok, Konstantego No competing interests have Ciołkowskiego 1J, 15-245 Bialystok, Poland been declared. * Email: [email protected] Copyright notice © The Author(s) 2017. This is an Open Access article distributed Abstract under the terms of the Creative Commons Attribution License, In northeastern Poland, the chemical variation of the Cladonia chlorophaea-pyxi- which permits redistribution, data group was much neglected, as TLC has not been used in delimitation of spe- commercial and non- cies differing in the chemistry. As a great part of herbal material of University in commercial, provided that the article is properly cited. Bialystok from NE Poland was misidentified, I found my studies to be necessary. Based on the collection of 123 specimens deposited in Herbarium of University Citation in Bialystok, nine species of the C. pyxidata-chlorophaea group are reported from Matwiejuk A. The revision of NE Poland. The morphology, secondary chemistry, and ecology of examined li- specimens of the Cladonia pyxidata-chlorophaea group chens are presented and the list of localities is provided. The results revealed that (lichenized Ascomycota) from C. -
H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology -
Book Reviews
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hochschulschriftenserver - Universität Frankfurt am Main 213 Tropical Bryology 16:213-214, 1999 Book Reviews M. P. Marcelli & T. Ahti (eds.) 1998. Recollecting Edvard August Vainio. CETESB, Sao Paulo, 188 pp (A5). Price US$ 30.00 + postage US$ 14.00 = US$ 44.00. M. P. Marcelli & M. R. D. Seaward (eds.) 1998. Lichenology in Latin America - history, current knowledge and application. CETESB, Sao Paulo, 179 pp (A4). Price US$ 40.00 + postage US$ 14.00 = US$ 54.00. Both books are available from M. P. Marcelli, Instituto de Botanica, Sao Paulo, Brazil. Orders may be sent by e-mail ([email protected]) or fax (+55-11-69191-2238). Price of the two books combined US$ 70.00 + postage US$ 14.00 = US$ 84.00. Payments can be made by personal checks or cash in US$ or UK Sterling. It is not often that books devoted to tropical lichenology appear, and it is certainly a rare occurrence that two books are published simultaneously. It happened with the two books cited above, who give a good impression of the current state of the art in South American lichenology. They contain contributions presented at two consecutive international meetings held in September 1997 in Brazil. The first meeting, “Recollecting Vainio”, was held in the Carassa monastery, the center of Vainio’s collecting activities in Brazil roughly a century ago. The aim of this meeting was primarily to collect topotypes of the species which Vainio described on the basis of his material from this area. -
One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K. -
Lichens and Associated Fungi from Glacier Bay National Park, Alaska
The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.