Is the Common Envelope Ejection Efficiency a Function of the Binary

Total Page:16

File Type:pdf, Size:1020Kb

Is the Common Envelope Ejection Efficiency a Function of the Binary Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 8 November 2018 (MN LATEX style file v2.2) Is the common envelope ejection efficiency a function of the binary parameters? P. J. Davis,1 U. Kolb,2 C. Knigge3 1Universit´eLibre de Bruxelles, Institut d’Astronomie et d’Astrophysique, Boulevard du Triomphe, B-1050 Brussels, Belgium 2The Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA 3University of Southampton, School of Physics and Astronomy, Highfield, Southampton, SO17 1BJ 8 November 2018 ABSTRACT We reconstruct the common envelope (CE) phase for the current sample of observed white dwarf-main sequence post-common envelope binaries (PCEBs). We apply multi- regression analysis in order to investigate whether correlations exist between the CE ejection efficiencies, αCE inferred from the sample, and the binary parameters: white dwarf mass, secondary mass, orbital period at the point the CE commences, or the orbital period immediately after the CE phase. We do this with and without consid- eration for the internal energy of the progenitor primary giants’ envelope. Our fits should pave the first steps towards an observationally motivated recipe for calculating αCE using the binary parameters at the start of the CE phase, which will be useful for population synthesis calculations or models of compact binary evolution. If we do consider the internal energy of the giants’ envelope, we find a statistically significant correlation between αCE and the white dwarf mass. If we do not, a correlation is found between αCE and the orbital period at the point the CE phase commences. Further- more, if the internal energy of the progenitor primary envelope is taken into account, then the CE ejection efficiencies are within the canonical range 0 < αCE ≤ 1, although α > PCEBs with brown dwarf secondaries still require CE ∼ 1. Key words: binaries: close – stars: evolution – methods: statistical – white dwarfs 1 INTRODUCTION giant will expand in response to rapid mass loss. As a result, the giant’s radius expands relative to its Roche lobe radius, The common envelope (CE) phase is a key formation process increasing the mass transfer rate. As a consequence of this arXiv:1106.4741v2 [astro-ph.SR] 21 Sep 2011 of all compact binary systems, such as cataclysmic variables run-away situation, mass transfer commences on a dynam- (CVs) and double white dwarf binaries. Such systems typ- ical timescale. The companion main-sequence star (hence- ically have orbital separations of a few solar radii, and yet forth the secondary) cannot incorporate this material into require orbital separations of between approximately 10 and its structure quickly enough and therefore expands to fill its 1000 R⊙ to accommodate the giant progenitor primary star. own Roche lobe. The envelope eventually engulfs both the Paczynski (1976) first suggested that the CE phase is core of the primary and the main-sequence secondary. responsible for removing large amounts of orbital energy and During the spiral-in phase, if enough orbital energy is angular momentum from the progenitor system, causing a imparted to the CE before the stellar components merge, significant reduction in the orbital separation between the then the CE may be ejected from the system leaving the core two stellar components (for reviews see Iben & Livio 1993; of the primary (now the white dwarf) and the secondary star Webbink 2008). at a greatly reduced separation. We term such systems post- In the pre-CE phase of evolution, the initially more mas- common envelope binaries (PCEBs). In the present study, sive stellar component (which we henceforth denote as the we consider PCEBs which have a white dwarf primary com- primary) evolves off the main sequence first. Depending on ponent, and a main sequence secondary companion. the orbital separation of the binary, the primary will fill Modelling the CE phase presents a major compu- its Roche lobe on either the red giant or asymptotic giant tational challenge, and can only be adequately accom- branch (AGB) and initiate mass transfer. If the giant pri- plished via three-dimensional (3D) hydrodynamical simula- mary possesses a deep convective envelope [i.e. the convec- tions (e.g. Sandquist et al. 2000). Even this approach, how- tive envelope has a mass of more than approximately 50 per ever, still cannot cope with the large dynamic range of time cent of the giant’s mass; Hjellming & Webbink (1987)], the and length scales involved during the CE phase. c 0000 RAS 2 P. J. Davis et al. Clearly, such hydrodynamical simulations are too com- binary PG 1115+166 (Maxted et al. 2002) and the white putationally intensive to be included in full binary or pop- dwarf-main sequence PCEB IK Peg (Davis et al. 2010). This ulation synthesis codes. Instead, such codes resort to pa- indicates that an energy source in addition to gravitational rameterisations of the CE phase. One such parametrization energy is being exploited during the CE ejection process describes the CE phase in terms of a simple energy budget that is not accounted for in the standard energy budget for- argument. A fraction αCE of the orbital energy released as mulation such as thermal energy and recombination energy the binary orbit tightens, ∆Eorb, is available to unbind the of ionized material within the giant’s envelope (Han et al. giant’s envelope from the core. Hence, if the change in the 2002; Dewi & Tauris 2000; Webbink 2008). envelope’s binding energy is ∆Ebind, we have (e.g. de Kool The second issue is that previous studies into the 1992; de Kool & Ritter 1993; Willems & Kolb 2004) formation and evolution of white dwarf binaries (e.g. de Kool & Ritter 1993; Willems & Kolb 2004) have as- ∆Ebind = αCE∆Eorb. (1) sumed that αCE is a global constant, i.e. αCE is the same for The efficiency αCE is a free parameter with values 0 < all progenitor systems, irrespective of their parameters upon αCE ≤ 1 (although values of αCE > 1 are discussed). How- entering the CE phase. This may be a somewhat na¨ıve as- ever, the value of αCE is poorly constrained as a result of sumption. Indeed, Terman & Taam (1996) suggest that αCE our equally poor understanding of the physics underlying may depend upon the internal structure of the Roche lobe the CE phase. filling primary progenitor. An alternative formulation in terms of the angu- In this spirit, Politano & Weiler (2007) calculated the lar momentum budget of the binary was suggested by present-day population of PCEBs and CVs if αCE is a func- Nelemans et al. (2000) from their investigation into the for- tion of the secondary mass. They considered both a power- n mation of double white dwarf binaries, which they assumed law dependence (i.e. αCE ∝ M2 , where n is some power), occurred from two CE phases. They suggested that the rela- and a dependence of αCE on a cut-off mass. If the secondary tive change in the binary’s total angular momentum, ∆J/J, mass was below this cut-off limit, then a merger between and the relative change in the binary’s total mass, ∆M/M, the two stellar components is assumed to be unavoidable during the CE phase are related by (formally αCE = 0 in this case). ∆J ∆M As Davis et al. (2010) found, however, these formalisms = γCE , (2) J M tend to underestimate αCE for PCEBs with low-mass sec- ondaries ( < 0.2 M⊙). For example even though a n = 2 where γCE is the specific angular momentum removed from ∼ dependence could account for IK Peg, it predicts that sys- the binary by the ejected CE in units of the binary’s ini- tems with M2 < 0.4 M⊙ cannot survive the CE phase. This tial specific angular momentum. Nelemans & Tout (2005) ∼ is in conflict with observations that show that PCEBs with found that a value of 1.5 ≤ γCE ≤ 1.75 could account for all secondary masses as low as M2 ≈ 0.05 M⊙ do exist. observed PCEBs. This alternative description was prompted by the fact During the preparation of this paper, we became aware of similar studies being carried out by Zorotovic et al. that for double white dwarf binaries a value of αCE < 0 was needed to describe the first CE phase, which is clearly (2010) and De Marco et al. (2011). Zorotovic et al. (2010) unphysical. This indicates that the orbital energy increases applied the CE reconstruction method described by during the first phase of mass transfer, with a corresponding Nelemans & Tout (2005) to the observed sample of PCEBs. increase in the orbital separation. In light of this, Webbink They investigated whether αCE depended on either the sec- (2008) suggested that the first phase of mass transfer is ondary mass or the orbital period immediately after the CE quasi-conservative, and does not give rise to a CE phase. phase. They concluded that there was no dependence in ei- However, the angular momentum budget approach pre- ther case. However, this conclusion was based on a qualita- dicts PCEB local space densities that are approximately a tive, ‘by-eye’, analysis. factor of ten larger than observed estimates (Davis et al. De Marco et al. (2011), on the other hand, found evi- 2010). It also predicts that the number of systems increases dence that αCE increases with increasing mass of the pro- towards longer orbital periods, with a maximum number genitor primary star, but decreases with increasing mass of of systems at approximately 1000 d (Maxted et al. 2007a; the secondary. However, they only considered PCEBs which Davis et al. 2010). This is contrary to observations, which underwent negligible angular momentum loss since emerg- show that there is a maximum number of PCEBs with or- ing from the CE phase, which limited their sample size to bital periods of about 1 d (Rebassa-Mansergas et al.
Recommended publications
  • Download Version of Record (PDF / 6MB)
    Open Research Online The Open University’s repository of research publications and other research outputs The Formation and Evolution of Cataclysmic Variables Thesis How to cite: Davis, Philip (2009). The Formation and Evolution of Cataclysmic Variables. PhD thesis The Open University. For guidance on citations see FAQs. c 2009 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000f236 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk e-p> Faculty of Science, The Open University The Formation and Evolution of Cataclysmic Variables Philip Davis MPhys. Submitted for the degree of Doctor of Philosophy June 2009 T>ecr€ <yf Suamission ; i=i Jotoe 2 ^rr£ op B S ProQuest Number: 13837663 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13837663 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC.
    [Show full text]
  • Expanding Space
    ASK ASTRO Astronomy’s experts from around the globe answer your cosmic questions. cosmologists call “dark energy,” burn not only hydrogen, but also helium. But after about produces repulsive gravitational 1 to 2 billion years, it will exhaust its supply of nuclear effects that cause the average fuel entirely and its core will contract into a white dwarf distance between galaxies to made of carbon and oxygen, while the outer layers of its increase faster and faster over atmosphere drift away as a planetary nebula. time. Determining dark energy’s White dwarfs are roughly the size of Earth, but the true nature remains one of the Sun as a white dwarf will be about 200,000 times denser greatest mysteries in theoretical than our planet. These objects no longer burn fuel to physics today. generate light or heat, but because they start out hot So, does the existence of dark — 10,000 kelvins or more — and have immensely high energy in our accelerating density, they continue shining with residual heat and universe mean that space is cool slowly. It takes a white dwarf roughly 10 trillion expanding everywhere, even on years (nearly 730 times the current age of the universe, small scales such as those inside which is 13.7 billion years) to cool off enough that it no of an atom, where most of the longer gives off visible light and becomes what astrono- volume is effectively “empty” mers term a black dwarf. On March 7, 2004, space? The short answer is no! So, the Sun won’t become a black dwarf for trillions We do know that meteorites exist on the surface of NASA’s Mars rover Spirit captured a And we should all count ourselves of years — and, in fact, no black dwarfs exist yet, simply Mars.
    [Show full text]
  • NRO 1/2011 Värikuva Galaksista M106
    Tapahtumakalenteri Kevätkokouskutsu jäsenille Pääkirjoitus WarkaudenAD Kassiopeia ASTRA ry:n jäsenlehti NRO 1/2011 Värikuva galaksista M106. Kuva on otettu Härkämäellä 13.3.2011. Valotus BVR 120 min. Taivas oli kuvaushetkellä hieman utuinen ja valoisa. Kuva © Härkämäen observatorio. Härkämäellä otettu värikuva M82 galaksista.Kuva on BVR-suotimilla otettu kuva. Kutakin väriä on valotettu 50 min. Kuva © Härkämäen observatorio. 2 YHTEYSTIEDOT SISÄLLYSLUETTELO Warkauden Kassiopeia ry Griffith observatorio Los Härkämäentie 88 Angelesissa .............................................. 4 79480 Kangaslampi Yhdistysuutisia ........................................ 5 Tapahtumakalenteri ............................... 5 Sähköposti: Testaamassa marsmönkijää ................... 6 [email protected] Pääkirjoitus ............................................. 10 Supernovajäänne - Uuden alku ............... 12 Yhdistyksen kotisivut: Eksoplaneettatapaaminen Grazissa ....... 17 http://www.kassiopeia.net Kerhotalon rakentaminen jatkuu ............ 20 Härkämäen observatorio: http://www.taurushill.net Kevätkokouskutsu keskiaukeamalla LEHDEN TOIMITUS Päätoimittaja ja taittaja: Harri Haukka Vakioavustajat: Markku Nissinen, Veli-Pekka Hentunen, Jari Juutilainen, Hannu Aartolahti, Harri Vilokki ja Tuomo Salmi ETUKANNEN TARINA Lehti ilmestyy yhdestä kolmeen kertaa vuodes- Etukannen kuvasta on pidempi ja syväluotaa- sa ja se jaetaan jokaiselle jäsenelle kevät- ja/tai vampi artikkeli tämän lehden sivuilla 6-10. syyskokouskutsujen mukana. Lehteä on myös
    [Show full text]
  • Wikipedia:Vetrina 1 Wikipedia:Vetrina
    Wikipedia:Vetrina 1 Wikipedia:Vetrina Voci in vetrina Voci di qualità Strumenti • Criteri per una voce da vetrina • Criteri per una voce di qualità • Confronto tra voci di qualità e voci in vetrina • Segnalazioni - (archivio) • Progetto:Qualità Pagine correlate • Come scrivere una buona voce Le voci in vetrina sono voci che i wikipediani ritengono particolarmente complete, corrette ed accurate • La voce perfetta nonché piacevoli da leggere. • Manuale di stile • Voci al vaglio Per segnalare una voce da aggiungere o rimuovere dalla lista utilizza le apposite procedure, dove • Categoria:Voci in vetrina in altre saranno giudicate per stile, prosa, esaustività e neutralità. Queste procedure sono attivabili da chiunque lingue possieda i requisiti di voto sulle pagine. • Voci in vetrina in altre lingue senza Una stella dorata nella parte in alto a destra della voce indica che quella voce è attualmente in voce corrispondente in italiano vetrina. Un'altra piccola stella dorata nell'elenco degli interlink indica che quella voce è in vetrina in un'altra lingua; per l'elenco completo, è possibile consultare la categoria voci in vetrina in altre lingue. (LA) (IT) « Sed omnia praeclara tam difficilia, « Tutte le cose eccellenti sono tanto quam rara sunt » difficili, quanto rare » (Baruch Spinoza, Etica, De potentia intellectus seu de libertate humana, Propositio XLII, scholium) In questo momento nella lista sono presenti 553 voci, su un totale di 1 046 490 voci dell'enciclopedia: ciò significa che una voce ogni 1 892 si trova in questa lista. Altre 273 sono invece riconosciute di qualità. Novità in vetrina Wikipedia:Vetrina 2 Modifica [1] Dudley Wrangel Clarke (Johannesburg, 27 aprile 1899 – Londra, 7 maggio 1974) è stato un militare britannico, ufficiale del British Army e pioniere delle operazioni di inganno militare durante la seconda guerra mondiale.
    [Show full text]
  • About Supernovae Exploding Stars Have an Immense Capacity to Destroy—And Create
    symmetry | August 2015 feature August 25, 2015 All about supernovae Exploding stars have an immense capacity to destroy—and create. By Ali Sundermier Somewhere in the cosmos, a star is reaching the end of its life. Maybe it’s a massive star, collapsing under its own gravity. Or maybe it’s a dense cinder of a star, greedily stealing matter from a companion star until it can’t handle its own mass. Whatever the reason, this star doesn’t fade quietly into the dark fabric of space and time. It goes kicking and screaming, exploding its stellar guts across the universe, leaving us with unparalleled brightness and a tsunami of particles and elements. It becomes a supernova. Here are ten facts about supernovae that will blow your mind. 1 symmetry | August 2015 1. The oldest recorded supernova dates back almost 2000 years In 185 AD, Chinese astronomers noticed a bright light in the sky. Documenting their observations in the Book of Later Han, these ancient astronomers noted that it sparkled like a star, appeared to be half the size of a bamboo mat and did not travel through the sky like a comet. Over the next eight months this celestial visitor slowly faded from sight. They called it a “guest star.” Two millennia later, in the 1960s, scientists found hints of this mysterious visitor in the remnants of a supernova approximately 8000 light-years away. The supernova, SN 185, is the oldest known supernova recorded by humankind. 2 symmetry | August 2015 2. Many of the elements we’re made of come from supernovae Everything from the oxygen you’re breathing to the calcium in your bones, the iron in your blood and the silicon in your computer was brewed up in the heart of a star.
    [Show full text]
  • Neutrinos Aus Thermonuklearen Supernovae in JUNO
    Neutrinos aus thermonuklearen Supernovae in JUNO Bachelorarbeit in Physik von Josina Schulte vorgelegt der Fakultat¨ fur¨ Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westf¨alischen Technischen Hochschule Aachen im Januar 2018 angefertigt am III. Physikalischen Institut B bei Prof. Dr. Achim Stahl Zweitgutachter Prof. Dr. Christopher Wiebusch Inhaltsverzeichnis 1 Einleitung 3 2 JUNO 4 3 Uberblick¨ 5 3.1 Sternentwicklung . .5 3.2 Supernovae . .6 3.2.1 Kernkollapssupernovae . .6 3.2.2 Thermonukleare Supernovae . .7 4 Analyse 10 4.1 Neutrinoproduktion . 10 4.2 Berechnung des Neutrinoflusses . 13 4.3 Abstandsabh¨angigkeit . 13 4.4 Detektionskan¨ale....................................... 14 4.5 Detektor und Untergrund . 19 4.6 Rate in JUNO . 20 5 Fazit 24 2 1 Einleitung Neutrinos liefern als nur schwach wechselwirkende Elementarteilchen Informationen uber¨ die auf kleinsten Skalen ablaufenden Reaktionen. Durch ihre sehr geringe Wechselwirkungsrate als elek- trisch neutral geladenes Lepton mit verschwindender Masse, k¨onnen sie außerdem Informationen uber¨ weite Distanzen und durch viel Materie transportieren. Dies macht es andererseits umso schwieriger, Neutrinos zu messen. Da die Detektion von Neutrinos sich jedoch stets weiterentwi- ckelt, sind sie geeignete Kandidaten fur¨ die Untersuchung extraterrestrischer Kernvorg¨ange wie Supernovae. Bei der Kernkollapssupernova 1987A konnten nur einige wenige Neutrinoereignisse aufgenommen werden. Dies weckte Interesse an der Weiterentwicklung von Neutrinodetektoren zur Messung von Supernovaneutrinos. Zukunftig¨ wird JUNO (Jiangmen Underground Neutrino Observatory) bei einer Kernkollapssupernova in einer typischen Entfernung von 10 kpc1 vermutlich mehrere tausend Neutrinoereignisse registrieren k¨onnen (siehe [1]). Dies gibt Hoffnung, auch bisher außer acht gelassene Ph¨anomene, wie zum Beispiel galaktische Supernovae vom Typ Ia, in Betracht ziehen zu k¨onnen.
    [Show full text]
  • Round 2 - GD - Google Docs PSACA Presents: Groundhog Day (2018-19) Round 2 by Bill Tressler with Thanks to Bern Mccauley and the Great Valley Quiz Team
    2/7/2019 Round 2 - GD - Google Docs PSACA Presents: Groundhog Day (2018-19) Round 2 by Bill Tressler with thanks to Bern McCauley and the Great Valley Quiz Team Tossups 1. One member of this literary race wrote the poem “Perry-the-Winkle” about a boy who makes a lonely friend. These people originated in the Valley of the Anduin River and migrated during the Wandering Days. One of these individuals won the Battle of Greenfields by knocking a head into a rabbit hole, thus inventing golf. Other members of this literary race beg (*) Ents to attack Isengard, hold an eleventy-first birthday party, and live in underground houses. The Shire is home to—for 10 points—what literary creatures that include Frodo and Bilbo Baggins? answer: hobbit s 2. Lajos Winkler devised a test that measures this element’s concentration by titrating introduced iodine. It bonds to chromium in eskolaites, and to uranium in yellowcake powder. Perchlorates contain at least four atoms of this element that Paul Bert identified as toxic at high pressures. Joseph Priestley was one discoverer of this (*) lightest of the chalcogens. Three atoms of this are in each ozone molecule and two atoms of it are in a carbon compound you exhale. For 10 points—give this element with symbol O. answer: oxygen (accept O before given) 3. In December 1840, the Charles Wilkes expedition visited this landmark known for the 1790 footprints. This object’s Byron Ledge is north of the Hilina Slump and its activity created the Thurston Tube. Historical events here caused the Star of the Sea Church relocation, the Chain of Craters Road closing, and an ability to read at night in (*) Hilo.
    [Show full text]
  • White Dwarfs
    White Dwarfs • Low mass stars are unable to reach high enough temperatures to ignite elements heavier than LECTURE 15: hydrogen in their core and become white dwarfs. Planetary nebulae reveal them. Can be He or CO. WHITE DWARFS Rarely NeOMg. AND THE ADVANCED EVOLUTION • Hot exposed core of an evolved low mass star. OF MASSIVE STARS • Supported by electron degeneracy pressure. M 8M ≥ • Unable to produce energy by contracting or igniting http://apod.nasa.gov/apod/astropix.html nuclear reactions • As white dwarfs radiate energy, they become cooler and less luminous gradually fading into oblivion, but it can take a long time…. http://en.wikipedia.org/wiki/Ring_Nebula A white dwarf is the remnant of stellar evolution for stars between 0.08 and 8 solar masses (below 0.08 one can have brown dwarfs). They can be made The Ring Negula in Lyra (M57) out of helium, or more commonly carbon and oxygen 700 pc; magnitute 8.8 (rarely NeOMg). MASS RADIUS RELATION FOR WHITE DWARFS if supported by GM ρ 13 5/3 Pc = = 1.00× 10 (ρYe ) non-relativistic electron 2R degeneracy pressure ⎛ 3M ⎞ GM ⎜ 3 ⎟ 5/3 5/3 GM ρ ⎝ 4π R ⎠ 13 ⎛ 3M ⎞ ⎛ 1⎞ ≈ = 1.00× 10 ⎜ 3 ⎟ ⎜ ⎟ 2R 2R ⎝ 4π R ⎠ ⎝ 2⎠ 2 5/3 5/3 ⎛ 3G ⎞ M 13 ⎛ 3 ⎞ M ⎜ ⎟ = 1.00×10 ⎜ ⎟ 5 ⎝ 8π ⎠ R4 ⎝ 8π ⎠ R 2/3 1/3 13 ⎛ 3 ⎞ 1 M = 1.00×10 ⎜ ⎟ ⎝ 8π ⎠ GR 19 1/3 R = 3.63×10 / M More massive 1/3 white dwarfs 8 ⎛ M ⎞ Earth R = 6370 km R = 2.9×10 cm are smaller ⎝⎜ ⎠⎟ M Mass versus radius relation More massive white dwarf stars are denser for the radius How far can this go? Mass distribution! Most WDs cluster around 0.6 M!.
    [Show full text]
  • Ad Pages Template
    HAIL UNTO THE MASTER OF BATTLE SINCE 1992 VOLUME 24 | ISSUE 28 | JULY 9-15, 2015 | FREE [2] WEEKLY ALIBI JULY 9-15 , 2015 JULY 9-15 , 2015 WEEKLY ALIBI [3] CRIB NOTES alibi BY AUGUST MARCH Crib Notes: July 9, 2015 VOLUME 24 | ISSUE 28 | JULY 9-15 , 2015 EDITORIAL 1 Potential plans for the future of Burque’s FILM EDITOR: BioPark have been submitted to city Devin D. O’Leary (ext. 230) [email protected] officials for legislative guidance. The report MUSIC EDITOR : on improving the zoo is _______________ pages August March (ext. 245) FOOD EDITOR : long. Ty Bannerman (ext. 260) [email protected] CALENDARS EDITOR/COPY EDITOR: a)108; a number with mystic associations Mark Lopez (ext. 239) [email protected] b)3; because the animals are being STAFF WRITER /SOCIAL MEDIA GURU : released into the Bosque in 2022; how Amelia Olson (ext. 224) [email protected] hard can that be? CONTRIBUTING WRITERS: c)10,000; mostly descriptions of demands Cecil Adams, Sam Adams, Steven Robert Allen, Captain by the primates for more bananas America, Gustavo Arellano, Rob Brezsny, Shawna Brown, Suzanne Buck, Eric Castillo, David Correia, Mark d)0; there is no BioPark; it’s really a prison Fischer, Ari LeVaux, Mark Lopez, August March, for cute and cuddly animals. Genevieve Mueller, Geoffrey Plant, Benjamin Radford, Jeremy Shattuck, Holly von Winckel During the summer raccoons and other PRODUCTION 2 urban wildlife like coyotes are a thing in the ART DIRECTOR: Jesse Schulz (ext. 229) [email protected] Duke City. What order of mammals do the PRODUCTION MANAGER : rascally but sometimes vicious little Archie Archuleta (ext.
    [Show full text]
  • The Galaxy's Building Blocks
    STARS THE GALAXY’S BUILDING BLOCKS NASA, ESA CONTENTS 2 Secret lives of supermassive stars Take a look at how massive stars live, die, and leave their legacy on their surroundings. 8 Five stars that could go bang Visit the progenitors of the Milky Way’s next most likely supernovae. 14 The little stars that couldn’t Often called failed stars, brown dwarfs still harbor vital information about planet and star formation. 20 The hunt for stars’ hidden fingerprints Astronomers are looking to today’s stars for clues about star formation and evolution in the past. A supplement to Astronomy magazine Live fast, die young The Tarantula Nebula in the Large Magellanic Cloud holds hundreds of thousands of young stars. The star formation region at lower center, 30 Doradus, harbors the super star cluster R136, which contains the most massive star known. NASA/ESA/E. SABBI/STSCI Secret lives of supermassiveThe most massive stars stars burn through their material incredibly fast, die in fantastic explosions, and have long-lasting effects on their neighborhoods. by Yvette Cendes upermassive stars are the true rock stars of the uni- makes the cloud’s material begin to assemble. This new clump verse: They shine bright, live fast, and die young. attracts more and more gas and dust until it begins to collapse Defined as stars with masses a hundred times or more under its own weight to form an object known as a protostar. than that of our Sun, these stars can be millions of In the process, its gravitational energy converts to kinetic times more luminous than ours and burn through energy, which heats the protostar.
    [Show full text]
  • Stellar Graveyards – White Dwarfs, Neutron Stars and Black Holes
    Lives of the Stars Lecture 8: Stellar graveyards – white dwarfs, neutron stars and black holes Presented by Dr Helen Johnston School of Physics Spring 2016 The University of Sydney Page In tonight’s lecture • white dwarfs – the end-point for low- and intermediate mass stars • neutron stars – the end-point for high-mass stars • Black holes – the end of the highest-mass stars? The University of Sydney Page 2 After the end We have discussed in great detail how stars live and evolve, and how they end their lives. This lecture, we’re going to look at the remnants that are left after a star finishes its evolution, the truly stable states of a star’s existence. The end-state that a star reaches depends on its mass. Roughly speaking, they are: • less than ~8 solar masses: white dwarf • 8– ?25? solar masses: neutron star • more than ?25? solar masses: black hole This is illustrated in the following diagram. The University of Sydney Page 3 White dwarfs It is estimated that there are about 35 billion white dwarfs in the Galaxy, possibly as many as 100 billion. They are by far the most common stellar remnant in the Galaxy. However, they are hard to find because they are so faint. As we have seen, white dwarfs are the end-points of evolution for stars like the Sun, left behind after a spectacular planetary nebula is ejected. HST image of NGC 2440; the white dwarf, visible at Thethe University centre, of Sydney is one of the hottest white dwarf stars known.
    [Show full text]
  • LECTURE 15 – Jerome Fang
    LECTURE 15 – Jerome Fang - •Making heavy elements in low-mass stars: the s-process (review) •White dwarfs: diamonds in the sky •Evolution of high-mass stars (M > 8 M); post-helium burning fusion processes Review of evolution of low-mass stars (M < 8 M) AGB star HB star Making heavy elements: the s-process During the AGB phase (double shell burning), additional elements are produced via the s-process in the outer shells of the star Heavier elements are produced via neutron capture onto nuclei (add neutrons to nuclei one-by-one) The neutrons are byproducts of helium and carbon burning (see next slide) S-process can make elements from cobalt up to bismuth The “s” stands for “slow” because products decay easily, making it difficult to form stable nuclei Additional Nucleosynthesis – The s-process. Iron nuclei are the “seeds” of the s- process years 44.5 days This is called the slow process of neutron addition or the s-process. (There is also a r-process) Magenta = elements produced by fusion Brown = elements produced by the s-process Beginning of the s-process 63Cu 64Cu 12.7 h Z = Number of protons N = Number of neutrons 60Ni 61Ni 62Ni 63Ni 100 y Z 59Co 60Co 61Co 5.27 y 56Fe 57Fe 58Fe 59Fe 60Fe 44.5 d = (capture n, release ) N = (release e-,) Each row = different isotopes of an element The s-process of neutron addition Each neutron capture takes you one step to the right in this diagram. Each decay of a neutron to a proton inside the nucleus moves you up a left diagonal.
    [Show full text]