Who Invented the Great Numerical Algorithms?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
European Mathematical Society
CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF MARTIN RAUSSEN Department of Mathematical Sciences, Aalborg University Fredrik Bajers Vej 7G DK-9220 Aalborg, Denmark e-mail: [email protected] ASSOCIATE EDITORS VASILE BERINDE Department of Mathematics, University of Baia Mare, Romania NEWSLETTER No. 52 e-mail: [email protected] KRZYSZTOF CIESIELSKI Mathematics Institute June 2004 Jagiellonian University Reymonta 4, 30-059 Kraków, Poland EMS Agenda ........................................................................................................... 2 e-mail: [email protected] STEEN MARKVORSEN Editorial by Ari Laptev ........................................................................................... 3 Department of Mathematics, Technical University of Denmark, Building 303 EMS Summer Schools.............................................................................................. 6 DK-2800 Kgs. Lyngby, Denmark EC Meeting in Helsinki ........................................................................................... 6 e-mail: [email protected] ROBIN WILSON On powers of 2 by Pawel Strzelecki ........................................................................ 7 Department of Pure Mathematics The Open University A forgotten mathematician by Robert Fokkink ..................................................... 9 Milton Keynes MK7 6AA, UK e-mail: [email protected] Quantum Cryptography by Nuno Crato ............................................................ 15 COPY EDITOR: KELLY -
Numerical Computation with Rational Functions
NUMERICAL COMPUTATION WITH RATIONAL FUNCTIONS (scalars only) Nick Trefethen, University of Oxford and ENS Lyon + thanks to Silviu Filip, Abi Gopal, Stefan Güttel, Yuji Nakatsukasa, and Olivier Sète 1/26 1. Polynomial vs. rational approximations 2. Four representations of rational functions 2a. Quotient of polynomials 2b. Partial fractions 2c. Quotient of partial fractions (= barycentric) 2d. Transfer function/matrix pencil 3. The AAA algorithm with Nakatsukasa and Sète, to appear in SISC 4. Application: conformal maps with Gopal, submitted to Numer. Math. 5. Application: minimax approximation with Filip, Nakatsukasa, and Beckermann, to appear in SISC 6. Accuracy and noise 2/26 1. Polynomial vs. rational approximation Newman, 1964: approximation of |x| on [−1,1] −휋 푛 퐸푛0 ~ 0.2801. ./푛 , 퐸푛푛 ~ 8푒 Poles and zeros of r: exponentially clustered near x=0, exponentially diminishing residues. Rational approximation is nonlinear, so algorithms are nontrivial. poles There may be nonuniqueness and local minima. type (20,20) 3/26 2. Four representations of rational functions Alpert, Carpenter, Coelho, Gonnet, Greengard, Hagstrom, Koerner, Levy, Quotient of polynomials 푝(푧)/푞(푧) SK, IRF, AGH, ratdisk Pachón, Phillips, Ruttan, Sanathanen, Silantyev, Silveira, Varga, White,… 푎푘 Beylkin, Deschrijver, Dhaene, Drmač, Partial fractions 푧 − 푧 VF, exponential sums Greengard, Gustavsen, Hochman, 푘 Mohlenkamp, Monzón, Semlyen,… Berrut, Filip, Floater, Gopal, Quotient of partial fractions 푛(푧)/푑(푧) Floater-Hormann, AAA Hochman, Hormann, Ionita, Klein, Mittelmann, Nakatsukasa, Salzer, (= barycentric) Schneider, Sète, Trefethen, Werner,… 푇 −1 Antoulas, Beattie, Beckermann, Berljafa, Transfer function/matrix pencil 푐 푧퐵 − 퐴 푏 IRKA, Loewner, RKFIT Druskin, Elsworth, Gugercin, Güttel, Knizhnerman, Meerbergen, Ruhe,… Sometimes the boundaries are blurry! 4/26 2a. -
REVIEWS and DESCRIPTIONS of TABLES and BOOKS the Numbers
MATHEMATICS OF COMPUTATION Volume 65, Number 213, January 1996, Pages 429{443 S 0025-5718-96-00698-9 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS The numbers in brackets are assigned according to the American Mathematical Society classification scheme. The 1991 Mathematics Subject Classification can be found in the annual subject index of Mathematical Reviews starting with the December 1990 issue. 1[65-00, 41-00, 41A05, 41A21, 41A55, 41A65, 65C05, 65H05, 65T20, 73C50, 73V20]—Handbook of numerical analysis, Vol. III, P. G. Ciarlet and J. L. Lions (Editors), Techniques of scientific computing (Part 1), Numerical methods for solids (Part 1), Solution of equations in Rn (Part 2), North-Holland, 1 Amsterdam, 1994, x+778 pp., 24 2 cm, $154.25/Dfl. 270.00 This book contains three parts: 1) Techniques of Scientific Computing; 2) Nu- merical Methods for Solids; 3) Solution of Equations in Rn. Nevertheless, only the second part gets close to “numerical methods for large-scale computation”. The aims of the book are rather “constructive methods”, which are often the background to numerical methods. The first part is concerned with three aspects of approximation theory. First, Claude Brezinski provides an interesting historical perspective on interpolation, ap- proximation and numerical quadrature since the year 1611. His main contribution, however, is a survey on Pad´e approximation, written jointly with van Iseghen. The algebraic theory naturally elucidates the connections with orthogonal polynomi- als and continued fractions. The convergence theory contains, on the one hand, a complete theory for Stieltjes functions and, on the other hand, only convergence in capacity for the general case. -
ITS FIRST FIFTY YEARS Carl Β
THE MATHEMATICAL ASSOCIATION OF AMERICA: ITS FIRST FIFTY YEARS Carl Β. Boyer Brooklyn College, CUNY Richard W. Feldmann Lycoming College Harry M. Gehman SUN Yat Buffalo Phillip S. Jones University of Michigan Kenneth O. May University of Toronto Harriet F. Montague SUNYat Buffalo Gregory H. Moore University of Toronto Robert A. Rosenbaum Wesleyan University Emory P. Starke Rutgers University Dirk J. Struik Massachusetts Institute of Technology THE MATHEMATICAL ASSOCIATION OF AMERICA: ITS FIRST FIFTY YEARS Kenneth O. May, editor University of Toronto, Canada Published and distributed by The Mathematical Association of America Copyright 1972 by THE MATHEMATICAL ASSOCIATION OF AMERICA (INCORPORATED) PREFACE The fiftieth anniversary of the founding of the Mathematical Association of America was celebrated at the 1965 summer meeting at Cornell University [MONTHLY 72, 1053-1059]. The invited addresses on that occasion dealing with the past, present, and future of the Association and of mathematics, were published in the fiftieth anniversary issue [MONTHLY 74, Num. !, Part II] under the editorship of Carl B. Allendoerfer. The historical addresses by A. A. Bennett, R. A. Rosenbaum, W. L. Duren, Jr., and P. S. Jones whetted appetites for a more complete story of the Association. Early in 1966, on a recommendation of the Committee on Publications, President R. L. Wilder appointed a Committee on the Preparation of a Fifty-Year History of the Association consisting of Carl B. Boyer, Kenneth O. May (Chairman), and Dirk J. Struik. An appropriation of one thousand dollars was set aside to meet incidental expenses. The Committee began its work with very ambitious plans, hoping to get financial support for interviewing older members of the Association and the preparation of special studies on particular aspects of the Association's work. -
Www .Ima.Umn.Edu
ce Berkeley National Laboratory) ce Berkeley Who should attend? Industrial engineers and scientists who want to learn about modern techniques in scientific computations Researchers from academic institutions involved in multidisciplinary collaborations Organizer Robert V. Kohn Tutorial Lectures: Weinan E Leslie F. Greengard courtesy and S.Graphics J-D. Yu Sakia (Epson Research Corporation), and J.A. Sethian (Dept. and Lawren UC Berkeley of Mathematics, James A. Sethian www.ima.umn.edu The primary goal of this workshop is to facilitate the use of the best computational techniques in important industrial applications. Key developers of three of the most significant recent or emerging paradigms of computation – fast multipole methods, level set methods, and multiscale computation – will provide tutorial introductions to these classes of methods. Presentations will be particularly geared to scientists using or interested in using these approaches in industry. In addition the workshop will include research reports, poster presentations, and problem posing by industrial researchers, and offer ample time for both formal and informal discussion, related to the use of these new methods of computation. The IMA is an NSF funded Institute Schedule Weinan E received his Ph.D. from the University of California at Los Angeles in 1989. He was visiting MONDAY, MARCH 28 member at the Courant Institute from 1989 to 1991. He joined the IAS in Princeton as a long term mem- All talks are in Lecture Hall EE/CS 3-180 ber in 1992 and went on to take a faculty 8:30 Coffee and Registration position at the Courant Institute at New York Reception Room EE/CS 3-176 University in 1994. -
The Bibliography
Referenced Books [Ach92] N. I. Achieser. Theory of Approximation. Dover Publications Inc., New York, 1992. Reprint of the 1956 English translation of the 1st Rus- sian edition; the 2nd augmented Russian edition is available, Moscow, Nauka, 1965. [AH05] Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A Functional Analysis Framework, volume 39 of Texts in Applied Mathe- matics. Springer, New York, second edition, 2005. [Atk89] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons Inc., New York, second edition, 1989. [Axe94] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994. [Bab86] K. I. Babenko. Foundations of Numerical Analysis [Osnovy chislennogo analiza]. Nauka, Moscow, 1986. [Russian]. [BD92] C. A. Brebbia and J. Dominguez. Boundary Elements: An Introductory Course. Computational Mechanics Publications, Southampton, second edition, 1992. [Ber52] S. N. Bernstein. Collected Works. Vol. I. The Constructive Theory of Functions [1905–1930]. Izdat. Akad. Nauk SSSR, Moscow, 1952. [Russian]. [Ber54] S. N. Bernstein. Collected Works. Vol. II. The Constructive Theory of Functions [1931–1953]. Izdat. Akad. Nauk SSSR, Moscow, 1954. [Russian]. [BH02] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics: An Introduction, volume 80 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin, fourth edition, 2002. [BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid Tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000. [Boy01] John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publi- cations Inc., Mineola, NY, second edition, 2001. [Bra84] Achi Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, volume 85 of GMD-Studien [GMD Studies]. -
JOHN WILDER TUKEY 16 June 1915 — 26 July 2000
Tukey second proof 7/11/03 2:51 pm Page 1 JOHN WILDER TUKEY 16 June 1915 — 26 July 2000 Biogr. Mems Fell. R. Soc. Lond. 49, 000–000 (2003) Tukey second proof 7/11/03 2:51 pm Page 2 Tukey second proof 7/11/03 2:51 pm Page 3 JOHN WILDER TUKEY 16 June 1915 — 26 July 2000 Elected ForMemRS 1991 BY PETER MCCULLAGH FRS University of Chicago, 5734 University Avenue, Chicago, IL 60637, USA John Wilder Tukey was a scientific generalist, a chemist by undergraduate training, a topolo- gist by graduate training, an environmentalist by his work on Federal Government panels, a consultant to US corporations, a data analyst who revolutionized signal processing in the 1960s, and a statistician who initiated grand programmes whose effects on statistical practice are as much cultural as they are specific. He had a prodigious knowledge of the physical sci- ences, legendary calculating skills, an unusually sharp and creative mind, and enormous energy. He invented neologisms at every opportunity, among which the best known are ‘bit’ for binary digit, and ‘software’ by contrast with hardware, both products of his long associa- tion with Bell Telephone Labs. Among his legacies are the fast Fourier transformation, one degree of freedom for non-additivity, statistical allowances for multiple comparisons, various contributions to exploratory data analysis and graphical presentation of data, and the jack- knife as a general method for variance estimation. He popularized spectrum analysis as a way of studying stationary time series, he promoted exploratory data analysis at a time when the subject was not academically respectable, and he initiated a crusade for robust or outlier-resist- ant methods in statistical computation. -
An Extension of Matlab to Continuous Functions and Operators∗
SIAM J. SCI. COMPUT. c 2004 Society for Industrial and Applied Mathematics Vol. 25, No. 5, pp. 1743–1770 AN EXTENSION OF MATLAB TO CONTINUOUS FUNCTIONS AND OPERATORS∗ † † ZACHARY BATTLES AND LLOYD N. TREFETHEN Abstract. An object-oriented MATLAB system is described for performing numerical linear algebra on continuous functions and operators rather than the usual discrete vectors and matrices. About eighty MATLAB functions from plot and sum to svd and cond have been overloaded so that one can work with our “chebfun” objects using almost exactly the usual MATLAB syntax. All functions live on [−1, 1] and are represented by values at sufficiently many Chebyshev points for the polynomial interpolant to be accurate to close to machine precision. Each of our overloaded operations raises questions about the proper generalization of familiar notions to the continuous context and about appropriate methods of interpolation, differentiation, integration, zerofinding, or transforms. Applications in approximation theory and numerical analysis are explored, and possible extensions for more substantial problems of scientific computing are mentioned. Key words. MATLAB, Chebyshev points, interpolation, barycentric formula, spectral methods, FFT AMS subject classifications. 41-04, 65D05 DOI. 10.1137/S1064827503430126 1. Introduction. Numerical linear algebra and functional analysis are two faces of the same subject, the study of linear mappings from one vector space to another. But it could not be said that mathematicians have settled on a language and notation that blend the discrete and continuous worlds gracefully. Numerical analysts favor a concrete, basis-dependent matrix-vector notation that may be quite foreign to the functional analysts. Sometimes the difference may seem very minor between, say, ex- pressing an inner product as (u, v)orasuTv. -
Notices: Highlights
------------- ----- Tacoma Meeting (June 18-20)-Page 667 Notices of the American Mathematical Society June 1987, Issue 256 Volume 34, Number 4, Pages 601 - 728 Providence, Rhode Island USA ISSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of Notices was sent to the press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and supplementary announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meeting. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the headquarter's office of the Society. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for abstracts for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information. consult the meeting announcements and the list of organizers of special sessions. -
A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT, and BIT Numerical Mathematics
A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT,andBIT Numerical Mathematics Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 09 June 2021 Version 3.54 Title word cross-reference [3105, 328, 469, 655, 896, 524, 873, 455, 779, 946, 2944, 297, 1752, 670, 2582, 1409, 1987, 915, 808, 761, 916, 2071, 2198, 1449, 780, 959, 1105, 1021, 497, 2589]. A(α) #24873 [1089]. [896, 2594, 333]. A∗ [2013]. A∗Ax = b [2369]. n A [1640, 566, 947, 1580, 1460]. A = a2 +1 − 0 n (3) [2450]. (A λB) [1414]. 0=1 [1242]. 1 [334]. α [824, 1580]. AN [1622]. A(#) [3439]. − 12 [3037, 2711]. 1 2 [1097]. 1:0 [3043]. 10 AX − XB = C [2195, 2006]. [838]. 11 [1311]. 2 AXD − BXC = E [1101]. B [2144, 1953, 2291, 2162, 3047, 886, 2551, 957, [2187, 1575, 1267, 1409, 1489, 1991, 1191, 2007, 2552, 1832, 949, 3024, 3219, 2194]. 2; 3 979, 1819, 1597, 1823, 1773]. β [824]. BN n − p − − [1490]. 2 1 [320]. 2 1 [100]. 2m 4 [1181]. BS [1773]. BSI [1446]. C0 [2906]. C1 [1105]. 3 [2119, 1953, 2531, 1351, 2551, 1292, [3202]. C2 [3108, 2422, 3000, 2036]. χ2 1793, 949, 1356, 2711, 2227, 570]. [30, 31]. Cln(θ); (n ≥ 2) [2929]. cos [228]. D 3; 000; 000; 000 [575, 637]. -
Selected Papers
Selected Papers Volume I Arizona, 1968 Peter D. Lax Selected Papers Volume I Edited by Peter Sarnak and Andrew Majda Peter D. Lax Courant Institute New York, NY 10012 USA Mathematics Subject Classification (2000): 11Dxx, 35-xx, 37Kxx, 58J50, 65-xx, 70Hxx, 81Uxx Library of Congress Cataloging-in-Publication Data Lax, Peter D. [Papers. Selections] Selected papers / Peter Lax ; edited by Peter Sarnak and Andrew Majda. p. cm. Includes bibliographical references and index. ISBN 0-387-22925-6 (v. 1 : alk paper) — ISBN 0-387-22926-4 (v. 2 : alk. paper) 1. Mathematics—United States. 2. Mathematics—Study and teaching—United States. 3. Lax, Peter D. 4. Mathematicians—United States. I. Sarnak, Peter. II. Majda, Andrew, 1949- III. Title. QA3.L2642 2004 510—dc22 2004056450 ISBN 0-387-22925-6 Printed on acid-free paper. © 2005 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. -
John W. Tukey 1915–2000
John W. Tukey 1915–2000 A Biographical Memoir by David R. Brillinger 2018 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. JOHN WILDER TUKEY June 16, 1915–July 26, 2000 Elected to the NAS, 1961 John Wilder Tukey was renowned for research and service in academia, industry, and government. He was born June 16, 1915, in New Bedford, Massachusetts, the only child of Adah M. Takerand Ralph H. Tukey. His parents had grad- uated first and second in the Bates College class of 1898. John had unusual talents from an early age. He could read when he was three, and had remarkable powers of mental calculation. His father had obtained a doctorate in Latin from Yale University and then moved on to teach and be principal at New Bedford High School. His mother was a substitute teacher there. Perhaps as a consequence of these backgrounds, Tukey was schooled at home, but he did attend various classes at the high school. By David R. Brillinger Tukey’s wife, Elizabeth Rapp, was born on March 2, 1920, in Ocean City, New Jersey. She went to Temple Univer- sity and was later valedictorian in the 1944 class in business administration at Radcliffe College. About meeting John, she commented that the first time she saw him he was sitting in the front row of a public lecture asking quite difficult questions of the speaker. They later met at a folkdance class that John was teaching.