Amplification and Overexpression of the Dual-Specificity Tyrosine-(Y)- Phosphorylation Regulated Kinase 2 (DYRK2) Gene in Esophageal and Lung Adenocarcinomas1

Total Page:16

File Type:pdf, Size:1020Kb

Amplification and Overexpression of the Dual-Specificity Tyrosine-(Y)- Phosphorylation Regulated Kinase 2 (DYRK2) Gene in Esophageal and Lung Adenocarcinomas1 [CANCER RESEARCH 63, 4136–4143, July 15, 2003] Amplification and Overexpression of the Dual-Specificity Tyrosine-(Y)- Phosphorylation Regulated Kinase 2 (DYRK2) Gene in Esophageal and Lung Adenocarcinomas1 Charles T. Miller, Sanjeev Aggarwal, Theodore K. Lin, Susan L. Dagenais, Jorge I. Contreras, Mark B. Orringer, Thomas W. Glover, David G. Beer, and Lin Lin2 Departments of Surgery, Section of Thoracic Surgery [C. T. M., S. A., T. K. L., J. I. C., M. B. O., D. G. B., L. L.] and Human Genetics [S. L. D., T. W. G.], University of Michigan Medical School, Ann Arbor, Michigan 48109 ABSTRACT fied previously a novel amplicon at 8p22–23 in gastroesophageal adenocarcinomas (8). Using the STS3-amplification mapping ap- Genomic amplification can lead to the activation of cellular proto- proach, the core-amplified domain was narrowed to include the cys- oncogenes during tumorigenesis, and is observed in most, if not all, human teine protease gene CTSB and the transcription factor GATA-4 (8, 9). malignancies, including adenocarcinomas of lung and esophagus. Using a two-dimensional restriction landmark genomic scanning technique, we Similarly, we identified and characterized an amplicon at 19q12 and identified five NotI/HinfI fragments with increased genomic dosage in an revealed cyclin E as the best candidate gene selected by the 19q12 adenocarcinoma of the gastroesophageal junction. Four of these amplified amplification in gastroesophageal adenocarcinomas (10). In addition fragments were matched within three contigs of chromosome 12 using the to oncogene activation via gene amplification, inactivation of the bioinformatics tool, Virtual Genome Scan. All three of the contigs map to tumor suppressor gene p53 occurs frequently in esophageal adenocar- the 12q13-q14 region, and the regional amplification in the tumor was cinoma (Ͼ87%) and early in low- and high-grade Barrett’s dysplasia verified using comparative genomic hybridization analysis. The 12q14 (11, 12). Amplification and overexpression of the MDM2 oncogene amplicon was characterized using sequence tagged site-amplification were reported in sarcomas lacking detectable p53 alterations, indicat- mapping with DNA from paired normal-tumor tissues of 75 gastroesoph- ing the role of coordinately abrogating the suppression of cell growth ageal and 37 lung adenocarcinomas. The amplicon spans a region of >12 regulated by the p53 pathway (13, 14). Whereas involvement of p53 Mb between genes DGKA and BLOV1. The core-amplified domain was determined to be <0.5 Mb between marker WI-12457 and gene IFNG. was observed frequently in esophageal adenocarcinomas, amplifica- However, MDM2, a well-documented oncogene of the region, is outside the tion of the MDM2 gene was not detected in one study (15) and was core-domain. Eleven genes and expressed sequence tags within the ampli- reported infrequently (4%) in another study in this type of tumor (16). con were selected for quantitative reverse transcription-PCR, and DYRK2, Using CGH, Moskaluk et al. (17) and van Dekken et al. (18) reported a member of the dual-specificity kinase family, was overexpressed in all of increased 12q DNA copy number in 27% and 39% of esophageal the tumors showing gene amplification. Among the sequence tagged site/ adenocarcinomas. However, these regions of gain were mapped to expressed sequence tag/gene markers tested, DYRK2 demonstrated the 12q21-q24, suggesting an additional 12q amplicon because MDM2 is highest DNA copy number and the highest level of mRNA overexpression mapped to the 12q13–15 region (13, 19). Tumors with amplified in the tumors. Moreover, DYRK2 mRNA overexpression (>2.5-fold of genes closely linked to MDM2 but without MDM2 amplification or normal mean) was found in 18.6% of additional 86 lung adenocarcinomas with discontinuous amplicons including MDM2 were also reported in an assay using oligonucleotide microarrays. DYRK2 mRNA overexpres- sion occurs more frequently than gene amplification in both esophageal (20–22). To clarify the amplification status within the 12q region, the and lung adenocarcinomas. This is the first report of amplification and current investigation was undertaken using RLGS (23, 24) combined overexpression of DYRK2 in any tumor type. with a recently developed bioinformatics tool, VGS (25). Use of these tools allows individual genomic fragments amplified in a tumor genome to be identified. DYRK2, a dual-specificity tyrosine-(Y)- INTRODUCTION phosphorylation regulated kinase gene, was identified as the most The incidence of esophageal adenocarcinoma has rapidly increased frequently amplified and overexpressed gene among the STS/EST/ in many western countries including the United States, the United gene markers examined, and also demonstrated the highest mRNA Kingdom, the Netherlands, Denmark, and Australia over the past 3 overexpression level among the genes tested in this series of gastroe- decades (1, 2). A poor overall 5-year survival rate of Ͻ10% portends sophageal and lung adenocarcinomas. Both lung and esophageal ad- the future clinical importance of this disease (3). Invasive adenocar- enocarcinomas were examined in this study to determine whether the cinoma is accompanied frequently with Barrett’s metaplasia, an in- amplicon is tumor type-specific or whether it occurs in multiple tumor testinalized columnar epithelium that replaces the normal squamous types. The present study represents the first complete characterization epithelium at the distal esophagus as a result of chronic gastroesoph- of the 12q14 amplification in both lung and esophageal adenocarci- ageal reflux (4, 5). Smoking and obesity have been implicated as nomas, and is the first to report amplification and overexpression of additional risk factors for the disease (6, 7). DYRK2 in any human cancer. Amplification of dominant-acting oncogenes plays a significant role in the development and/or progression of many types of human MATERIALS AND METHODS cancer, including esophageal and lung adenocarcinomas. We identi- Tissue Collection. After obtaining written consent, 75 esophageal and Received 12/4/02; accepted 5/7/03. gastric cardia adenocarcinomas, the corresponding normal squamous esopha- The costs of publication of this article were defrayed in part by the payment of page gus or gastric mucosa, and 123 lung adenocarcinomas were obtained from charges. This article must therefore be hereby marked advertisement in accordance with patients undergoing esophagectomy or pulmonary resection at the University 18 U.S.C. Section 1734 solely to indicate this fact. 1 Supported by National Cancer Institute Grant CA71606 and the Weber Research Fund. Supported also by NIH Training Grant CA009672-08 (to S. A.). 3 The abbreviations used are: STS, sequence tagged site; RLGS, restriction landmark 2 To whom requests for reprints should be addressed, at MS RB II B560, Box 0686, genome scanning; VGS, Virtual Genome Scan; CGH, comparative genomic hybridiza- Department of Surgery, Section of General Thoracic Surgery, University of Michigan tion; QG-PCR, quantitative genomic-PCR; EST, expressed sequence tag; NCBI, National Medical School, Ann Arbor, MI 48109. Phone: (734) 647-2787; Fax: (734) 763-0323; Center for Biotechnology Information; RT-PCR, reverse transcription-PCR; GAPDH, E-mail: [email protected]. glyceraldehyde-3-phosphate dehydrogenase. 4136 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2003 American Association for Cancer Research. DYRK2 GENE AMPLIFICATION IN ESOPHAGEAL ADENOCARCINOMAS Fig. 1. Two-dimensional RLGS analysis of NotI/HinfI DNA fragments from the normal and tumor tissues of patient E13, and a VGS image of virtual NotI/HinfI fragments of chromosome 12. DNA fragments from a gastroesophageal adenocar- cinoma of patient E13 (B) and normal tissue from the same patient (A) were resolved on two-dimen- sional gels. As shown, the comparison of relative intensity of each fragment (spot) between normal (A) and tumor (B) reveals five such fragments, B1 through B5 (arrows in B), that are darker in tumor as compared with corresponding spots A1 through A5 (arrows in A) in normal, suggesting increased DNA copy number in each of the five fragments in the tumor. C, matched virtual fragments C1 through C4 (black dots indicated by arrows in C) are shown on a VGS image with NotI/HinfI frag- ments from chromosome 12 (white dots in C). Fragment C5 was not found with any chromosomes using the VGS tool analysis, indicating the possible unavailability of sequences for this fragment in the GenBank databases. of Michigan Medical Center between 1992 and 2000. Patients in this study had for quantitative genomic PCR as described previously (9). PCR primers were no preoperative radiotherapy or chemotherapy. A small portion of each tissue designed to assure that the melting temperature (Tm) of each primer set was was embedded in OCT compound (Miles Scientific, Naperville, IL) and stored compatible with that of the internal control, herein GAPDH, which resides on Ϫ Ϫ at 70°C; the remainder was stored at 70°C until use. the same chromosome 12 so the ratio of tumorsample/GAPDH: normalsample/GAPDH DNA Isolation and RLGS-combined VGS Analyses. High molecular will reflect the actual DNA copy numbers increased in tumor. The quantity of weight DNA was extracted as described previously (26) from tumors with the normal and tumor genomic DNA was measured by fluorometry (TKO100; Ͼ70% tumor cellularity. Two-dimensional RLGS was performed as described Hoefer Scientific Instruments, San Francisco, CA) to ensure equity of the previously
Recommended publications
  • Druggable Transient Pockets in Protein Kinases
    molecules Review Druggable Transient Pockets in Protein Kinases Koji Umezawa 1 and Isao Kii 2,* 1 Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-Minowa, Kami-ina, Nagano 399-4598, Japan; [email protected] 2 Laboratory for Drug Target Research, Faculty & Graduate School of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-ina, Nagano 399-4598, Japan * Correspondence: [email protected]; Tel.: +81-265-77-1521 Abstract: Drug discovery using small molecule inhibitors is reaching a stalemate due to low se- lectivity, adverse off-target effects and inevitable failures in clinical trials. Conventional chemical screening methods may miss potent small molecules because of their use of simple but outdated kits composed of recombinant enzyme proteins. Non-canonical inhibitors targeting a hidden pocket in a protein have received considerable research attention. Kii and colleagues identified an inhibitor targeting a transient pocket in the kinase DYRK1A during its folding process and termed it FINDY. FINDY exhibits a unique inhibitory profile; that is, FINDY does not inhibit the fully folded form of DYRK1A, indicating that the FINDY-binding pocket is hidden in the folded form. This intriguing pocket opens during the folding process and then closes upon completion of folding. In this review, we discuss previously established kinase inhibitors and their inhibitory mechanisms in comparison with FINDY. We also compare the inhibitory mechanisms with the growing concept of “cryptic inhibitor-binding sites.” These sites are buried on the inhibitor-unbound surface but become apparent when the inhibitor is bound. In addition, an alternative method based on cell-free protein synthesis of protein kinases may allow the discovery of small molecules that occupy these mysterious binding sites.
    [Show full text]
  • Download 20190410); Fragmentation for 20 S
    ARTICLE https://doi.org/10.1038/s41467-020-17387-y OPEN Multi-layered proteomic analyses decode compositional and functional effects of cancer mutations on kinase complexes ✉ Martin Mehnert 1 , Rodolfo Ciuffa1, Fabian Frommelt 1, Federico Uliana1, Audrey van Drogen1, ✉ ✉ Kilian Ruminski1,3, Matthias Gstaiger1 & Ruedi Aebersold 1,2 fi 1234567890():,; Rapidly increasing availability of genomic data and ensuing identi cation of disease asso- ciated mutations allows for an unbiased insight into genetic drivers of disease development. However, determination of molecular mechanisms by which individual genomic changes affect biochemical processes remains a major challenge. Here, we develop a multilayered proteomic workflow to explore how genetic lesions modulate the proteome and are trans- lated into molecular phenotypes. Using this workflow we determine how expression of a panel of disease-associated mutations in the Dyrk2 protein kinase alter the composition, topology and activity of this kinase complex as well as the phosphoproteomic state of the cell. The data show that altered protein-protein interactions caused by the mutations are asso- ciated with topological changes and affected phosphorylation of known cancer driver pro- teins, thus linking Dyrk2 mutations with cancer-related biochemical processes. Overall, we discover multiple mutation-specific functionally relevant changes, thus highlighting the extensive plasticity of molecular responses to genetic lesions. 1 Department of Biology, Institute of Molecular Systems Biology, ETH Zurich,
    [Show full text]
  • Regulation of the Stability of the Protein Kinase DYRK1A: Establishing Connections with the Wnt Signaling Pathway
    Regulation of the stability of the protein kinase DYRK1A: establishing connections with the Wnt signaling pathway Krisztina Arató TESI DOCTORAL UPF / 2010 Barcelona, November 2010 Regulation of the stability of the protein kinase DYRK1A: establishing connections with the Wnt signaling pathway Krisztina Arató Memòria presentada per optar al grau de Doctora per la Universitat Pompeu Fabra. Aquesta tesi ha estat realitzada sota la direcció de la Dra. Susana de la Luna al Centre de Regulació Genòmica (CRG, Barcelona), dins del Programa de Genes i Malaltia. Krisztina Arató Susana de la Luna A Pere, por haberme traído a Barcelona… Cover design by Luisa Lente (www.yoyo.es). Index Page Abstract/Resumen.................................................................................. 1 Introduction............................................................................................. 5 The protein kinase DYRK1A................................................................ 7 The DYRK family of protein ....................................................... 7 Structure and mechanism of activation of DYRK1A kinase........ 8 Regulation of DYRK1A expression ............................................ 10 Regulation of DYRK1A subcellular localization.......................... 11 Regulation of DYRK1A activity................................................... 13 DYRK1A as a regulator of signaling pathways........................... 14 The Notch signaling pathway........................................... 16 Receptor tyrosine kinase signaling.................................
    [Show full text]
  • Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases
    International Journal of Molecular Sciences Review Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview Mattias F. Lindberg and Laurent Meijer * Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France; [email protected] * Correspondence: [email protected] Abstract: Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2- like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein ki- nases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, ho- mocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer’s disease and related diseases, tauopathies, demen- tia, Pick’s disease, Parkinson’s disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in dia- betes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblas- Citation: Lindberg, M.F.; Meijer, L. tic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections Dual-Specificity, Tyrosine caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological Phosphorylation-Regulated Kinases implications calls for (1) a better understanding of the regulations and substrates of DYRKs and (DYRKs) and cdc2-Like Kinases CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation (CLKs) in Human Disease, an as therapeutic drugs.
    [Show full text]
  • Genome-Wide Association Study Reveals First Locus for Anorexia Nervosa and Metabolic Correlations
    bioRxiv preprint doi: https://doi.org/10.1101/088815; this version posted December 6, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-Wide Association Study Reveals First Locus for Anorexia Nervosa and Metabolic Correlations Authors Duncan, E.L.* ... 210 additional authors Thornton, L.M. Hinney, A. Daly, M.J. Sullivan, P.F. Zeggini, E. Breen, G. Bulik, C.M.* * Corresponding authors Abstract Anorexia nervosa (AN) is a serious eating disorder characterized by restriction of energy intake relative to requirements, resulting in abnormally low body weight. It has a lifetime prevalence of approximately 1%, disproportionately affects females1,2, and has no well replicated evidence of effective pharmacological or psychological treatments despite high morbidity and mortality2. Twin studies support a genetic basis for the observed aggregation of AN in families3, with heritability estimates of 48%-74%4. Although initial genome-wide association studies (GWASs) were underpowered5,6, evidence suggested that signals for AN would be detected with increased power5. We present a GWAS of 3,495 AN cases and 10,982 controls with one genome-wide significant locus (index variant rs4622308, p=4.3x10-9) in a region (chr12:56,372,585- % 56,482,185) which includes six genes. The SNP-chip heritability (h"#$) of AN from these data is 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability stems from common genetic variation.
    [Show full text]
  • Lethal Congenital Contractural Syndrome Type 2 (LCCS2) Is Caused by a Mutation in ERBB3 (Her3), a Modulator of the Phosphatidylinositol-3-Kinase/Akt Pathway
    REPORT Lethal Congenital Contractural Syndrome Type 2 (LCCS2) Is Caused by a Mutation in ERBB3 (Her3), a Modulator of the Phosphatidylinositol-3-Kinase/Akt Pathway Ginat Narkis, Rivka Ofir, Esther Manor, Daniella Landau, Khalil Elbedour, and Ohad S. Birk Lethal congenital contractural syndrome type 2 (LCCS2) is an autosomal recessive neurogenic form of arthrogryposis that is associated with atrophy of the anterior horn of the spinal cord. We previously mapped LCCS2 to 6.4 Mb on chromosome 12q13 and have now narrowed the locus to 4.6 Mb. We show that the disease is caused by aberrant splicing of ERBB3, which leads to a predicted truncated protein. ERBB3 (Her3), an activator of the phosphatidylinositol-3-kinase/ Akt pathway—regulating cell survival and vesicle trafficking—is essential for the generation of precursors of Schwann cells that normally accompany peripheral axons of motor neurons. Gain-of-function mutations in members of the epidermal growth-factor tyrosine kinase–receptor family have been associated with predilection to cancer. This is the first report of a human phenotype resulting from loss of function of a member of this group. Lethal congenital contractual syndrome type 2 (LCCS2 shown). The possibility that the disease-associated locus [MIM 607598]), a neonatally lethal form of arthrogryposis is between D12S305 and D12S1072 cannot be ruled out, presenting in two Israeli-Bedouin kindreds1 (families A but it is less likely, since this would require two crossing- and B) (fig. 1), is characterized by multiple joint contrac- over events occurring in individual 61 (fig. 2). tures, anterior horn atrophy in the spinal cord, and a In an attempt to identify the specific molecular defect unique feature of a markedly distended urinary bladder.
    [Show full text]
  • Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer Shuying Sun1* , Austin Zane2, Carolyn Fulton3 and Jasmine Philipoom4
    Sun et al. BMC Cancer (2021) 21:268 https://doi.org/10.1186/s12885-021-07990-7 RESEARCH ARTICLE Open Access Statistical and bioinformatic analysis of hemimethylation patterns in non-small cell lung cancer Shuying Sun1* , Austin Zane2, Carolyn Fulton3 and Jasmine Philipoom4 Abstract Background: DNA methylation is an epigenetic event involving the addition of a methyl-group to a cytosine- guanine base pair (i.e., CpG site). It is associated with different cancers. Our research focuses on studying non-small cell lung cancer hemimethylation, which refers to methylation occurring on only one of the two DNA strands. Many studies often assume that methylation occurs on both DNA strands at a CpG site. However, recent publications show the existence of hemimethylation and its significant impact. Therefore, it is important to identify cancer hemimethylation patterns. Methods: In this paper, we use the Wilcoxon signed rank test to identify hemimethylated CpG sites based on publicly available non-small cell lung cancer methylation sequencing data. We then identify two types of hemimethylated CpG clusters, regular and polarity clusters, and genes with large numbers of hemimethylated sites. Highly hemimethylated genes are then studied for their biological interactions using available bioinformatics tools. Results: In this paper, we have conducted the first-ever investigation of hemimethylation in lung cancer. Our results show that hemimethylation does exist in lung cells either as singletons or clusters. Most clusters contain only two or three CpG sites. Polarity clusters are much shorter than regular clusters and appear less frequently. The majority of clusters found in tumor samples have no overlap with clusters found in normal samples, and vice versa.
    [Show full text]
  • Risk Variants Disrupting Enhancers of TH1 and TREG Cells in Type 1 Diabetes
    Risk variants disrupting enhancers of TH1 and TREG cells in type 1 diabetes Peng Gaoa,b,c,1, Yasin Uzuna,b,c,1, Bing Hea,b,c, Sarah E. Salamatid, Julie K. M. Coffeyd, Eva Tsalikiand, and Kai Tana,b,c,e,f,g,2 aDivision of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104; bCenter for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104; cDepartment of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104; dStead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242; eDepartment of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; fDepartment of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and gDepartment of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Edited by Wing Hung Wong, Stanford University, Stanford, CA, and approved March 1, 2019 (received for review September 5, 2018) Genome-wide association studies (GWASs) have revealed 59 geno- patients, despite of the pivotal roles of TH1 and TREG cells in the mic loci associated with type 1 diabetes (T1D). Functional inter- pathogenesis of T1D. In this study, we conducted epigenomic pretation of the SNPs located in the noncoding region of these loci and transcriptomic profiling of TH1 and TREG cells isolated from remains challenging. We perform epigenomic profiling of two a cohort of five healthy donors and six newly diagnosed T1D enhancer marks, H3K4me1 and H3K27ac, using primary TH1 and patients. Our data (8) reveal significant alteration in the en- TREG cells isolated from healthy and T1D subjects.
    [Show full text]
  • A Genome-Wide Association Study Confirming a Strong Effect of HLA and Identifying Variants in CSAD/Lnc-ITGB7-1 on Chromosome
    Diabetes Page 2 of 55 1 A genome-wide association study confirming a strong effect of HLA and 2 identifying variants in CSAD/lnc-ITGB7-1 on chromosome 12q13.13 associated 3 with susceptibility to fulminant type 1 diabetes 4 5 Running title: GWAS of fulminant type 1 diabetes 6 7 Yumiko Kawabata1,*, Nao Nishida2,3,*, Takuya Awata4,†, Eiji Kawasaki5,†, 8 Akihisa Imagawa6, Akira Shimada7, Haruhiko Osawa8, Shoichiro Tanaka9, 9 Kazuma Takahashi10, Masao Nagata11, Hisafumi Yasuda12, Yasuko Uchigata13, 10 Hiroshi Kajio14, Hideichi Makino15, Kazuki Yasuda16,†, Tetsuro Kobayashi17,‡, 11 Toshiaki Hanafusa18, ‡, Katsushi Tokunaga3,†,§, and Hiroshi Ikegami1,†,§ 12 13 1 Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka, Japan 14 2 Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan 15 3 Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan 16 4 Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare Hospital, Tochigi, Japan 17 5 Diabetes Center, Shin-Koga Hospital, Fukuoka, Japan 18 6 Department of Internal Medicine (I), Osaka Medical College, Osaka, Japan 19 7 Department of Endocrinology and Diabetes, Saitama Medical University, Saitama, Japan 20 8 Department of Laboratory Medicine, Ehime University School of Medicine, Ehime, Japan 21 9 Ai Home Clinic Toshima, Tokyo, Japan 22 10 Faculty of Nursing and Graduate School Nursing, Iwate Prefectural University, Iwate,
    [Show full text]
  • Supplemental Figures 04 12 2017
    Jung et al. 1 SUPPLEMENTAL FIGURES 2 3 Supplemental Figure 1. Clinical relevance of natural product methyltransferases (NPMTs) in brain disorders. (A) 4 Table summarizing characteristics of 11 NPMTs using data derived from the TCGA GBM and Rembrandt datasets for 5 relative expression levels and survival. In addition, published studies of the 11 NPMTs are summarized. (B) The 1 Jung et al. 6 expression levels of 10 NPMTs in glioblastoma versus non‐tumor brain are displayed in a heatmap, ranked by 7 significance and expression levels. *, p<0.05; **, p<0.01; ***, p<0.001. 8 2 Jung et al. 9 10 Supplemental Figure 2. Anatomical distribution of methyltransferase and metabolic signatures within 11 glioblastomas. The Ivy GAP dataset was downloaded and interrogated by histological structure for NNMT, NAMPT, 12 DNMT mRNA expression and selected gene expression signatures. The results are displayed on a heatmap. The 13 sample size of each histological region as indicated on the figure. 14 3 Jung et al. 15 16 Supplemental Figure 3. Altered expression of nicotinamide and nicotinate metabolism‐related enzymes in 17 glioblastoma. (A) Heatmap (fold change of expression) of whole 25 enzymes in the KEGG nicotinate and 18 nicotinamide metabolism gene set were analyzed in indicated glioblastoma expression datasets with Oncomine. 4 Jung et al. 19 Color bar intensity indicates percentile of fold change in glioblastoma relative to normal brain. (B) Nicotinamide and 20 nicotinate and methionine salvage pathways are displayed with the relative expression levels in glioblastoma 21 specimens in the TCGA GBM dataset indicated. 22 5 Jung et al. 23 24 Supplementary Figure 4.
    [Show full text]
  • Significant Locus and Metabolic Genetic Correlations Revealed In
    ARTICLES Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa Laramie Duncan, Ph.D., Zeynep Yilmaz, Ph.D., Helena Gaspar, Ph.D., Raymond Walters, Ph.D., Jackie Goldstein, Ph.D., Verneri Anttila, Ph.D., Brendan Bulik-Sullivan, Ph.D., Stephan Ripke, M.D., Ph.D., Eating Disorders Working Group of the Psychiatric Genomics Consortium, Laura Thornton, Ph.D., Anke Hinney, Ph.D., MarkDaly,Ph.D.,PatrickF.Sullivan,M.D.,F.R.A.N.Z.C.P.,EleftheriaZeggini,Ph.D.,GeromeBreen,Ph.D., Cynthia M. Bulik, Ph.D. Objective: The authors conducted a genome-wide associ- fraction of the twin-based heritability arises from common ation study of anorexia nervosa and calculated genetic genetic variation. The authors identified one genome-wide correlations with a series of psychiatric, educational, and significant locus on chromosome 12 (rs4622308) in a region metabolic phenotypes. harboring a previously reported type 1 diabetes and auto- immune disorder locus. Significant positive genetic cor- Method: Following uniform quality control and imputation relations were observed between anorexia nervosa and procedures using the 1000 Genomes Project (phase 3) schizophrenia, neuroticism, educational attainment, and in 12 case-control cohorts comprising 3,495 anorexia high-density lipoprotein cholesterol, and significant negative nervosa cases and 10,982 controls, the authors performed genetic correlations were observed between anorexia standard association analysis followed by a meta-analysis nervosa and body mass index, insulin, glucose, and lipid across cohorts. Linkage disequilibrium score regression phenotypes. was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based Conclusions: Anorexia nervosa is a complex heritable phe- 2 heritability [h SNP]), partitioned heritability, and genetic notype for which this study has uncovered the first genome- correlations [rg]) between anorexia nervosa and 159 other wide significant locus.
    [Show full text]
  • Transposon Mutagenesis Identifies Genetic Drivers of Brafv600e Melanoma
    ARTICLES Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma Michael B Mann1,2, Michael A Black3, Devin J Jones1, Jerrold M Ward2,12, Christopher Chin Kuan Yew2,12, Justin Y Newberg1, Adam J Dupuy4, Alistair G Rust5,12, Marcus W Bosenberg6,7, Martin McMahon8,9, Cristin G Print10,11, Neal G Copeland1,2,13 & Nancy A Jenkins1,2,13 Although nearly half of human melanomas harbor oncogenic BRAFV600E mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in BrafV600E mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma. Human orthologs of >500 CCGs are enriched for mutations in human melanoma or showed statistically significant clinical associations between RNA abundance and survival of patients with metastatic melanoma. We also functionally validate CEP350 as a new tumor-suppressor gene in human melanoma. SB mutagenesis has thus helped to catalog the cooperative molecular mechanisms driving BRAFV600E melanoma and discover new genes with potential clinical importance in human melanoma. Substantial sun exposure and numerous genetic factors, including including BrafV600E, recapitulate the genetic and histological hallmarks skin type and family history, are the most important melanoma risk of human melanoma. In these models, increased MEK-ERK signaling factors. Familial melanoma, which accounts for <10% of cases, is asso- initiates clonal expansion of melanocytes, which is limited by oncogene- ciated with mutations in CDKN2A1, MITF2 and POT1 (refs.
    [Show full text]