The Indigenous Farm Genetic Resources of Somalia: Preliminary Phenotypic and Genotypic Characterization of Cattle, Sheep and Goats
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crossbreeding of Cattle in Africa
Journal of Agriculture and Environmental Sciences June 2018, Vol. 7, No. 1, pp. 16-31 ISSN: 2334-2404 (Print), 2334-2412 (Online) Copyright © The Author(s). All Rights Reserved. Published by American Research Institute for Policy Development DOI: 10.15640/jaes.v7n1a3 URL: https://doi.org/10.15640/jaes.v7n1a3 Crossbreeding of Cattle in Africa R Trevor Wilson1 Abstract Africa is endowed with a very wide range of mostly Bos indicus indigenous cattle breeds. A general statement with regard to their performance for meat or milk is that they are of inferior genetic value. Attempts to improve their performance have rarely relied on within-breed improvement but have concentrated on crossing to supposedly superior exotic Bos taurus types. Exotic types have not always – indeed have rarely -- been chosen on objective criteria and the imported breeds generally indicate the colonial past of individual African countries rather than on use of “the right animal in the right place”. Most attempts at increasing output have been undertaken under research station conditions. Results on station have been very variable but the limited success achieved has rarely been carried over in to the general African cattle population. This paper documents a number of attempts to alter the genetic make-up of African cattle in several countries and discusses the reasons for the failure of most of these. Keywords: Bos indicus, Bos taurus, livestock experiments, milk production, meat production 1. Introduction African countries differ greatly in climatic, ecological and agricultural conditions and in socioeconomic factors. In many countries, nonetheless, cattle are the most important livestock species. -
Genomic Divergence of Zebu and Taurine Cattle Identified Through High-Density SNP Genotyping
Porto-Neto et al. BMC Genomics 2013, 14:876 http://www.biomedcentral.com/1471-2164/14/876 RESEARCH ARTICLE Open Access Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping Laercio R Porto-Neto1,2,6*, Tad S Sonstegard3*, George E Liu3, Derek M Bickhart3, Marcos VB Da Silva5, Marco A Machado5, Yuri T Utsunomiya4, Jose F Garcia4, Cedric Gondro2 and Curtis P Van Tassell3 Abstract Background: Natural selection has molded evolution across all taxa. At an arguable date of around 330,000 years ago there were already at least two different types of cattle that became ancestors of nearly all modern cattle, the Bos taurus taurus more adapted to temperate climates and the tropically adapted Bos taurus indicus. After domestication, human selection exponentially intensified these differences. To better understand the genetic differences between these subspecies and detect genomic regions potentially under divergent selection, animals from the International Bovine HapMap Experiment were genotyped for over 770,000 SNP across the genome and compared using smoothed FST. The taurine sample was represented by ten breeds and the contrasting zebu cohort by three breeds. Results: Each cattle group evidenced similar numbers of polymorphic markers well distributed across the genome. Principal components analyses and unsupervised clustering confirmed the well-characterized main division of do- mestic cattle. The top 1% smoothed FST, potentially associated to positive selection, contained 48 genomic regions across 17 chromosomes. Nearly half of the top FST signals (n = 22) were previously detected using a lower density SNP assay. Amongst the strongest signals were the BTA7:~50 Mb and BTA14:~25 Mb; both regions harboring candi- date genes and different patterns of linkage disequilibrium that potentially represent intrinsic differences between cattle types. -
Review on Potential of Reproductive Technology to Improved Ruminant Production in Ethiopia
Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.10, No.8, 2020 Review on Potential of Reproductive Technology to Improved Ruminant Production in Ethiopia Jalel Fikadu Yadeta Assosa University, College of Agriculture and Natural Resources, Department of animal science, Assosa, Ethiopia DOI: 10.7176/JBAH/10-8-02 Publication date: April 30 th 2020 INTRODUCTION Reproductive technology encompasses all current and anticipated uses of technology in human and animal reproduction, including assisted reproductive technology, contraception and others (Mapletoft and Hasler, 2005). Research into physiology and embryology has provided a basis for the development of technologies that increase productivity of farm animals through enhanced control of reproductive function. Animal Biotechnology represents an expanding collection of rapidly developing disciplines in science and information technologies. The livestock provides many opportunities to utilize these disciplines and evolving competencies. Individually, these are powerful tools capable of providing significant improvements in productivity. Combinations of these technologies coupled with information systems and data analysis will provide even more significant changes in the next decade. Various techniques have been developed and refined to obtain a large number of offspring from genetically superior animals or obtain offspring from infertile (or sub fertile) animals (Naqvi et al ., 2001; Blackburn, 2004). Based on the progress in scientific knowledge of endocrinology, reproductive physiology, cell biology and embryology during the last fifty years new bio techniques have been developed for and introduced into animal breeding and husbandry (Wrathall et al., 2004). Among them are estrus synchronization/induction, artificial insemination, Multiple Ovulation Induction and Embryo Transfer (MOET), in vitro embryo production (IVP) and cloning by Nuclear Transfer (NT) all are components of the tool box for present and future applications (Betteridge, 2003). -
Productivity of Boran Cattle Maintained by Chemoprophylaxis Under Trypanosomiasis Risk
Productivity of Boran cattle maintained by chemoprophylaxis under trypanosomiasis risk J.C.M. Trail, K. Sones, J.M.C. Jibbo, J. Durkin, D.E. Light and Max Murray February 1985 *j -T- S A ILCA PUBLICATIONS The International Livestock Centre for Africa (ILCA) is an autonomous, non-profit making research and in formation centre with a mandate to improve livestock production throughout sub-Saharan Africa. The activi ties and publications of the centre are financed by the Consultative Group on International Agricultural Re search (CGIAR). The CGIAR members which have funded ILCA to date arc the International Develcp ment Research Centre, the International Fund for Agricultural Development, the United Nations Devel opment Programme, the World Bank, and the govern ments of Australia, Belgium, Canada, Chitia, Denmark, the Federal Republic of Germany, Finland, France, Iran. Ireland, Italy, the Netherlands. Nigeria. Norvay, Saudi Arabia, Sweden, Switzerland. the United King dom and the United States of America. Responsibility for ILCA publications rests solely with the centre and with such other parties as may be cited as joint authors. Until 1982, the centre's two maiil series of scientific pubiications were Systems Studies and Monographs. These two series have now been superceded by the present series of Research Reports. Productivity of Boran cattle maintained by chemoprophylaxis under trypanosomiasis risk 3 J.C.M. Trail', K. Sones 2 , J.M.C. Jibbo , J. Durkin4 , D.E. Light4 and Max Murray5 . 1 Livestock Productivity and Trypanotolerance Group, ILCA, P.O. Box 46847, Nairobi, K.nya. 2 May and Baker Ltd., Dagenham, Essex, UK. 3 Amboni Ltd., P.O. -
COX BRENTON, a C I Date: COX BRENTON, a C I USDA, APHIS, Animal Care 16-MAY-2018 Title: ANIMAL CARE INSPECTOR 6021 Received By
BCOX United States Department of Agriculture Animal and Plant Health Inspection Service Insp_id Inspection Report Customer ID: ALVIN, TX Certificate: Site: 001 Type: FOCUSED INSPECTION Date: 15-MAY-2018 2.40(b)(2) DIRECT REPEAT ATTENDING VETERINARIAN AND ADEQUATE VETERINARY CARE (DEALERS AND EXHIBITORS). ***In the petting zoo, two goats continue to have excessive hoof growth One, a large white Boer goat was observed walking abnormally as if discomforted. ***Although the attending veterinarian was made aware of the Male Pere David's Deer that had a front left hoof that appeared to be twisted approximately 90 degrees outward from the other three hooves and had a long hoof on the last report, the animal has not been assessed and a treatment pan has not been created. This male maneuvers with a limp on the affect leg. ***A female goat in the nursery area had a large severely bilaterally deformed udder. The licensee stated she had mastitis last year when she kidded and he treated her. The animal also had excessive hoof length on its rear hooves causing them to curve upward and crack. The veterinarian has still not examined this animal. Mastitis is a painful and uncomfortable condition and this animal has a malformed udder likely secondary to an inappropriately treated mastitis. ***An additional newborn fallow deer laying beside an adult fallow deer inside the rhino enclosure had a large round spot (approximately 1 1/2 to 2 inches round) on its head that was hairless and grey. ***A large male Watusi was observed tilting its head at an irregular angle. -
Mixed-Species Exhibits with Pigs (Suidae)
Mixed-species exhibits with Pigs (Suidae) Written by KRISZTIÁN SVÁBIK Team Leader, Toni’s Zoo, Rothenburg, Luzern, Switzerland Email: [email protected] 9th May 2021 Cover photo © Krisztián Svábik Mixed-species exhibits with Pigs (Suidae) 1 CONTENTS INTRODUCTION ........................................................................................................... 3 Use of space and enclosure furnishings ................................................................... 3 Feeding ..................................................................................................................... 3 Breeding ................................................................................................................... 4 Choice of species and individuals ............................................................................ 4 List of mixed-species exhibits involving Suids ........................................................ 5 LIST OF SPECIES COMBINATIONS – SUIDAE .......................................................... 6 Sulawesi Babirusa, Babyrousa celebensis ...............................................................7 Common Warthog, Phacochoerus africanus ......................................................... 8 Giant Forest Hog, Hylochoerus meinertzhageni ..................................................10 Bushpig, Potamochoerus larvatus ........................................................................ 11 Red River Hog, Potamochoerus porcus ............................................................... -
The Story of the Tuli and Boran Breeds
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CGSpace The multiplication of Africa’s indigenous cattle breeds internationally: the story of the Tuli and Boran breeds Ntombizakhe Mpofu (2002) ZaBelo Livestock Consultancy, P.O. Box 911, Bulawayo, Zimbabwe History of the breeds The Tuli The Tuli breed was developed from cattle indigenous to south-western Zimbabwe and eastern Botswana. In 1942, while working in the Lowveld area south of Gwanda, Zimbabwe, a land development officer, Mr Len Harvey, noticed that there appeared to be a distinct type of yellow Sanga cattle among the mixed native stock. These cattle seemed to be better adapted to local conditions and were superior to other stock. It was decided to purchase some of these cattle from the smallholder farmers and study them to determine if the type could be improved and whether or not they would breed true. In November 1945, 3000 acres were set aside in Guyu near Gwanda for the establishment of the Tuli Breeding Station. The founding herd had twenty cows and one bull. The idea was to breed bulls to assist in improving smallholder stock, but the commercial farmers also showed interest in the breed and started buying bulls from the station. A breed society was formed in 1961. Because of security problems associated with the liberation war, the Tuli herd was moved to Matopos Research Station in 1979. The selection programme is still in progress. The breed is now used in many commercial herds throughout Zimbabwe and there are seven stud breeders in the country. -
Post-Translational Protein Deimination Signatures in Plasma and Plasma Evs of Reindeer (Rangifer Tarandus)
biology Article Post-Translational Protein Deimination Signatures in Plasma and Plasma EVs of Reindeer (Rangifer tarandus) Stefania D’Alessio 1, Stefanía Thorgeirsdóttir 2, Igor Kraev 3 , Karl Skírnisson 2 and Sigrun Lange 1,* 1 Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; [email protected] 2 Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland; [email protected] (S.T.); [email protected] (K.S.) 3 Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)207-911-5000 (ext. 64832) Simple Summary: Reindeer are an important wild and domesticated species of the Arctic, Northern Europe, Siberia and North America. As reindeer have developed various strategies to adapt to extreme environments, this makes them an interesting species for studies into diversity of immune and metabolic functions in the animal kingdom. Importantly, while reindeer carry natural infections caused by viruses (including coronaviruses), bacteria and parasites, they can also act as carriers for transmitting such diseases to other animals and humans, so called zoonosis. Reindeer are also affected by chronic wasting disease, a neuronal disease caused by prions, similar to scrapie in sheep, mad cows disease in cattle and Creutzfeldt-Jakob disease in humans. The current study assessed a specific protein modification called deimination/citrullination, which can change how proteins Citation: D’Alessio, S.; function and allow them to take on different roles in health and disease processes. -
The Genome Landscape of Indigenous African Cattle
Kim et al. Genome Biology (2017) 18:34 DOI 10.1186/s13059-017-1153-y RESEARCH Open Access The genome landscape of indigenous African cattle Jaemin Kim1†, Olivier Hanotte2,3†, Okeyo Ally Mwai4, Tadelle Dessie3, Salim Bashir5, Boubacar Diallo6, Morris Agaba7, Kwondo Kim1,8, Woori Kwak1, Samsun Sung1, Minseok Seo1, Hyeonsoo Jeong9, Taehyung Kwon10, Mengistie Taye10,11, Ki-Duk Song12,18, Dajeong Lim13, Seoae Cho1, Hyun-Jeong Lee8,14, Duhak Yoon15, Sung Jong Oh16, Stephen Kemp4,17, Hak-Kyo Lee12,18*† and Heebal Kim1,10,19*† Abstract Background: The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems. Results: We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/ or pathways controlling anemia and feeding behavior in the trypanotolerant N’Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds. Conclusions: Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent. -
Phenotypic Characterisation of Ukerewe and Bunda
PHENOTYPIC CHARACTERISATION OF UKEREWE AND BUNDA TANGANYIKA SHORTHORN ZEBU CATTLE IN THE LAKE VICTORIA BASIN GODFREY LUCAS CHASAMA A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL ANIMAL PRODUCTION OF SOKOINE UNIVERSITY OF AGRICULTURE. MOROGORO, TANZANIA. ii 2013 ABSTRACT A study was carried out to characterise phenotypically the Ukerewe TSZ strain in order to know if it differs from the Bunda TSZ strain. Respondents from 46 households were interviewed on sources of income and food, number and species of livestock kept, ranking of livestock, usage of cattle, age at first calving, calving interval and lifetime number of calving. A total of 169 adult TSZ cattle were examined for coat colour pattern, and colours of coat, skin, muzzle, eyelid and hoof. Other traits that were examined are horn shape and sizes of udder, dewlap, testicle, navel-flap and prepuce. Physical body measurements namely body weight, heart girth, body length, withers height, horn length, ear length, muzzle circumference, hock circumference and tail length were taken for each cattle. The SPSS and SAS computer packages were used to analyse qualitative and quantitative data, respectively. Ukerewe TSZ cattle were observed to be significantly (p<0.05) heavier and calving earlier than Bunda TSZ cattle, whereas calving interval and lifetime number of calving revealed insignificant (p>0.05) differences between the two strains. Black colour occurred at significantly (p<0.05) higher frequency for the Ukerewe TSZ strain than for the Bunda TSZ strain. The Ukerewe TSZ strain was also found to have significantly (p<0.05) bigger heart girth and shorter horn length than the Bunda TSZ strain. -
Hybridization of Banteng (Bos Javanicus) and Zebu (Bos Indicus) Revealed by Mitochondrial DNA, Satellite DNA, AFLP and Microsatellites
Heredity (2003) 90, 10–16 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites IJ Nijman1,2, M Otsen1, ELC Verkaar1, C de Ruijter1, E Hanekamp1, JW Ochieng3, S Shamshad4, JEO Rege5, O Hanotte3, MW Barwegen6, T Sulawati7 and JA Lenstra5 1Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; 2Institute of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; 3International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya; 4National Institute of Animal Biotechnology, Jerantut 27000, Pahang D.M., Malaysia; 5International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia; 6Royal Institute of Linguistics and Anthropology, Reuvensplaats 2, 2300 RA Leiden, The Netherlands; 7Animal Reproduction Laboratory, Animal Husbandry Faculty, Brawijaya University, Malang, Indonesia Hybridization between wild and domestic bovine species The Madura animals also carried mitochondrial DNA of either occurs worldwide either spontaneously or by organized zebu and banteng origin. In both populations, zebu intro- crossing. We have analysed hybridization of banteng (Bos gression was confirmed by AFLP and SFLP. Microsatellite javanicus) and zebu (Bos indicus) in south-east Asian cattle analysis of the Malaysian Bali population revealed for 12 out using mitochondrial DNA (PCR-RFLP and sequencing), of 15 loci screened, Bali-cattle-specific alleles, several of AFLP, satellite fragment length polymorphisms (SFLP or which were also found in wild banteng animals. The tools we PCR-RFLP of satellite DNA) and microsatellite genotyping. -
Productivity of Boran Cattle Maintained by Chemoprophylaxis Under Trypanosomiasis Risk
ILCA Research Report No. 9 Productivity of Boran cattle maintained by chemoprophylaxis under trypanosomiasis risk J. CM. Trail, K. Sones, J.M.C. Jibbo, J. Durkin, D.E. Light and Max Murray February 1985 INTERNATIONAL LIVESTOCK CENTRE FOR AFRICA ADDIS ABABA, ETHIOPIA ILCA PUBLICATIONS The International Livestock Centre for Africa (ILCA) is an autonomous, non-profit making research and in formation centre with a mandate to improve livestock production throughout sub-Saharan Africa. The activi ties and publications of the centre are financed by the Consultative Group on International Agricultural Re search (CGIAR). The CGIAR members which have funded ILCA to date are the International Develop ment Research Centre, the International Fund for Agricultural Development, the United Nations Devel opment Programme, the World Bank, and the govern ments of Australia, Belgium, Canada, China, Denmark, the Federal Republic of Germany, Finland, France, Iran, Ireland, Italy, the Netherlands, Nigeria, Norway, Saudi Arabia, Sweden, Switzerland, the United King dom and the United States of America. Responsibility for ILCA publications rests solely with the centre and with such other parties as may be cited as joint authors. Until 1982, the centre's two main series of scientific publications were Systems Studies and Monographs. These two series have now been superceded by the present series of Research Reports. "This Or III II I III II III RHQS-AUA-623J Productivity of Boran cattle maintained by chemoprophylaxis under trypanosomiasis risk J.C.M. Trail1, K. Sones2, J.M.C. Jibbo3, J. Durkin4, D.E. Light4 and Max Murray5. 1 Livestock Productivity and Trypanotolerance Group, ILCA, P.O.