Dealing with the Infinite Part II How Many Points in a Square? Cantor Pressed Forward, Exchanging Letters Throughout with Dedekind
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biography Paper – Georg Cantor
Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies. -
Cantor on Infinity in Nature, Number, and the Divine Mind
Cantor on Infinity in Nature, Number, and the Divine Mind Anne Newstead Abstract. The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and sets. Cantor’s “actualism” went against the Aristote- lian tradition in metaphysics and mathematics. Under the pressures to defend his theory, his metaphysics changed from Spinozistic monism to Leibnizian volunta- rist dualism. The factor motivating this change was two-fold: the desire to avoid antinomies associated with the notion of a universal collection and the desire to avoid the heresy of necessitarian pantheism. We document the changes in Can- tor’s thought with reference to his main philosophical-mathematical treatise, the Grundlagen (1883) as well as with reference to his article, “Über die verschiedenen Standpunkte in bezug auf das aktuelle Unendliche” (“Concerning Various Perspec- tives on the Actual Infinite”) (1885). I. he Philosophical Reception of Cantor’s Ideas. Georg Cantor’s dis- covery of transfinite numbers was revolutionary. Bertrand Russell Tdescribed it thus: The mathematical theory of infinity may almost be said to begin with Cantor. The infinitesimal Calculus, though it cannot wholly dispense with infinity, has as few dealings with it as possible, and contrives to hide it away before facing the world Cantor has abandoned this cowardly policy, and has brought the skeleton out of its cupboard. He has been emboldened on this course by denying that it is a skeleton. Indeed, like many other skeletons, it was wholly dependent on its cupboard, and vanished in the light of day.1 1Bertrand Russell, The Principles of Mathematics (London: Routledge, 1992 [1903]), 304. -
The Axiom of Choice and Its Implications
THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial. -
Elements of Set Theory
Elements of set theory April 1, 2014 ii Contents 1 Zermelo{Fraenkel axiomatization 1 1.1 Historical context . 1 1.2 The language of the theory . 3 1.3 The most basic axioms . 4 1.4 Axiom of Infinity . 4 1.5 Axiom schema of Comprehension . 5 1.6 Functions . 6 1.7 Axiom of Choice . 7 1.8 Axiom schema of Replacement . 9 1.9 Axiom of Regularity . 9 2 Basic notions 11 2.1 Transitive sets . 11 2.2 Von Neumann's natural numbers . 11 2.3 Finite and infinite sets . 15 2.4 Cardinality . 17 2.5 Countable and uncountable sets . 19 3 Ordinals 21 3.1 Basic definitions . 21 3.2 Transfinite induction and recursion . 25 3.3 Applications with choice . 26 3.4 Applications without choice . 29 3.5 Cardinal numbers . 31 4 Descriptive set theory 35 4.1 Rational and real numbers . 35 4.2 Topological spaces . 37 4.3 Polish spaces . 39 4.4 Borel sets . 43 4.5 Analytic sets . 46 4.6 Lebesgue's mistake . 48 iii iv CONTENTS 5 Formal logic 51 5.1 Propositional logic . 51 5.1.1 Propositional logic: syntax . 51 5.1.2 Propositional logic: semantics . 52 5.1.3 Propositional logic: completeness . 53 5.2 First order logic . 56 5.2.1 First order logic: syntax . 56 5.2.2 First order logic: semantics . 59 5.2.3 Completeness theorem . 60 6 Model theory 67 6.1 Basic notions . 67 6.2 Ultraproducts and nonstandard analysis . 68 6.3 Quantifier elimination and the real closed fields . -
CLASS II MATHEMATICS CHAPTER-2: ORDINAL NUMBERS Cardinal Numbers - the Numbers One, Two, Three
CLASS II MATHEMATICS CHAPTER-2: ORDINAL NUMBERS Cardinal Numbers - The numbers one, two, three,..... which tell us the number of objects or items are called Cardinal Numbers. Ordinal Numbers - The numbers such as first, second, third ...... which tell us the position of an object in a collection are called Ordinal Numbers. CARDINAL NUMBERS READ THE CONVERSATION That was great Ria… I stood first Hi Mic! How in my class. was your result? In the conversation the word ’first’ is an ordinal number. LOOK AT THE PICTURE CAREFULLY FIRST THIRD FIFTH SECOND FOURTH ORDINAL NUMBERS Cardinal Numbers Ordinal Numbers 1 1st / first 2 2nd / second 3 3rd / third 4 4th / fourth 5 5th / fifth 6 6th / sixth 7 7th / seventh 8 8th / eighth 9 9th / ninth 10 10th / tenth Cardinal Numbers Ordinal Numbers 11 11th / eleventh 12 12th / twelfth 13 13th / thirteenth 14 14th / fourteenth 15 15th / fifteenth 16 16th / sixteenth 17 17th / seventeenth 18 18th / eighteenth 19 19th / nineteenth 20 20th / twentieth Q1. Observe the given sequence of pictures and fill in the blanks with correct ordinal numbers. 1. Circle is at __ place. 2. Bat and ball is at __ place. 3. Cross is at __ place. 4. Kite is at __ place. 5. Flower is at __ place. 6. Flag is at __ place. HOME ASSIGNMENT 1. MATCH THE CORRECT PAIRS OF ORDINAL NUMBERS: 1. seventh 4th 2. fourth 7th 3. ninth 20th 4. twentieth 9th 5. tenth 6th 6. sixth 10th 7. twelfth 13th 8. fourteenth 12th 9. thirteenth 14th Let’s Solve 2. FILL IN THE BLANKS WITH CORRECT ORDINAL NUMBER 1. -
Cantor's Discovery of Transfinite Numbers
HISTORIA MATHEMATICA 22 (1995), 33-42 "What Fermented in Me for Years": Cantor's Discovery of Transfinite Numbers Jos~ FERREIROS History of Science and Technology, 543 Stephens Hall, Unioersity of California at Berkeley, Berkeley, California 94720 Transfinite (ordinal) numbers were a crucial step in the development of Cantor's set theory. The new concept depended in various ways on previous problems and results, and especially on two questions that were at the center of Cantor's attention in September 1882, when he was about to make his discovery. First, the proof of the Cantor-Bendixson theorem motivated the introduction of transfinite numbers, and at the same time suggested the "principle of limitation," which is the key to the connection between transfinite numbers and infinite powers. Second, Dedekind's ideas, which Cantor discussed in September 1882, seem to have played an important heuristic role in his decision to consider the "symbols of infinity" that he had been using as true numbers, i.e., as autonomous objects; to this end Cantor introduced in his work, for the first time, ideas on (well) ordered sets. © 1995 Academic Press, Inc. Los ntimeros (ordinales) transfinitos constituyeron un paso clave en el desarrollo de la teorfa de conjuntos de Cantor. La nueva idea dependi6 en varias formas de resultados y problemas previos, pero especialmente de dos cuestiones que ocuparon a Cantor en septiem- bre de 1882, estando a punto de realizar su descubrimiento. En primer lugar, el teorema de Cantor-Bendixson, cuya demostraci6n motiv6 la introducci6n de los ntimeros transfinitos, y a la vez sugiri6 el "principio de limitaci6n" que constituye la clave de la conexi6n entre ntimeros transfinitos y potencias infinitas. -
Some Set Theory We Should Know Cardinality and Cardinal Numbers
SOME SET THEORY WE SHOULD KNOW CARDINALITY AND CARDINAL NUMBERS De¯nition. Two sets A and B are said to have the same cardinality, and we write jAj = jBj, if there exists a one-to-one onto function f : A ! B. We also say jAj · jBj if there exists a one-to-one (but not necessarily onto) function f : A ! B. Then the SchrÄoder-BernsteinTheorem says: jAj · jBj and jBj · jAj implies jAj = jBj: SchrÄoder-BernsteinTheorem. If there are one-to-one maps f : A ! B and g : B ! A, then jAj = jBj. A set is called countable if it is either ¯nite or has the same cardinality as the set N of positive integers. Theorem ST1. (a) A countable union of countable sets is countable; (b) If A1;A2; :::; An are countable, so is ¦i·nAi; (c) If A is countable, so is the set of all ¯nite subsets of A, as well as the set of all ¯nite sequences of elements of A; (d) The set Q of all rational numbers is countable. Theorem ST2. The following sets have the same cardinality as the set R of real numbers: (a) The set P(N) of all subsets of the natural numbers N; (b) The set of all functions f : N ! f0; 1g; (c) The set of all in¯nite sequences of 0's and 1's; (d) The set of all in¯nite sequences of real numbers. The cardinality of N (and any countable in¯nite set) is denoted by @0. @1 denotes the next in¯nite cardinal, @2 the next, etc. -
Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected]
Boise State University ScholarWorks Mathematics Undergraduate Theses Department of Mathematics 5-2014 Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected] Follow this and additional works at: http://scholarworks.boisestate.edu/ math_undergraduate_theses Part of the Set Theory Commons Recommended Citation Rahim, Farighon Abdul, "Axioms of Set Theory and Equivalents of Axiom of Choice" (2014). Mathematics Undergraduate Theses. Paper 1. Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Advisor: Samuel Coskey Boise State University May 2014 1 Introduction Sets are all around us. A bag of potato chips, for instance, is a set containing certain number of individual chip’s that are its elements. University is another example of a set with students as its elements. By elements, we mean members. But sets should not be confused as to what they really are. A daughter of a blacksmith is an element of a set that contains her mother, father, and her siblings. Then this set is an element of a set that contains all the other families that live in the nearby town. So a set itself can be an element of a bigger set. In mathematics, axiom is defined to be a rule or a statement that is accepted to be true regardless of having to prove it. In a sense, axioms are self evident. In set theory, we deal with sets. Each time we state an axiom, we will do so by considering sets. Example of the set containing the blacksmith family might make it seem as if sets are finite. -
A Severe Inconsistency of Transfinite Set Theory1
A severe inconsistency of transfinite set theory1 W. Mückenheim University of Applied Sciences, D-86161 Augsburg, Germany [[email protected]] Transfinite set theory including the axiom of choice supplies the following basic theorems: (1) Mappings between infinite sets can always be completed, such that at least one of the sets is exhausted. (2) The real numbers can be well ordered. (3) The relative positions of real numbers which are enumerated by natural numbers can always be determined, in particular the maximum real number below a given limit. (4) Any two different real numbers are separated by at least one rational number. These theorems are applied to map the irrational numbers into the rational numbers, showing that the set of all irrational numbers is countable. 1. Introduction Georg Cantor is that mathematician whose name is most closely connected with the notion of infinity. An essential point of his theory is the basic law (Denkgesetz) that the continuum can be well-ordered. Precisely 100 years ago, here in Heidelberg, Cantor had to suffer a serious attack from König2 who claimed to have contradicted this. In fact nobody has ever accomplished it. But Zermelo's axiom of choice, created immediately after that dispute, convinced more and more mathematicians that well-ordering could be proved. This is a singular case in history of mathematics. Instead of refuting König's claim by a counter example, an axiom was created which supplies rather an encoded proclamation of the desired result than proof3. The axiom of choice allows us to manipulate all the elements of an infinite set simultaneously instead of considering one after the other4. -
An Axiomatic Approach to the Ordinal Number System
An axiomatic approach to the ordinal number system Ineke van der Berg Thesis presented in partial fulfilment of the requirements for the degree of Master of Science (Mathematics) in the Faculty of Science at Stellenbosch University Supervisor: Professor Z. Janelidze 2021 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 6th March 2021 Copyright c 2021 Stellenbosch University All rights reserved. i Stellenbosch University https://scholar.sun.ac.za Acknowledgements I would like to thank my supervisor, Professor Zurab Janelidze, not only for his guidance and contributions to the thesis, but also for nurturing my confidence and enthusiasm throughout my studies. I could not imagine a better guide through the magical realm of mathematics. I also wish to thank my friend, Dr Katrina du Toit, for her skilful proofreading, usually on short notice. I value your appreciation for brevity and precision, and your feedback is exactly the right level of pedantic. I promise to use more commas in the future. Thanks, also, to my other friends, particularly Roy, Alan, and Dale, for their com- ments on topology, typography, and layout, respectively. Iggy, thank you for being supportive, for motivating me, and for always being available for conversation, whether academic or otherwise. -
Applications of Ultrafilters in Ergodic Theory and Combinatorial Number
Vrije Universiteit Amsterdam Jagiellonian University Master Thesis Applications of Ultrafilters in Ergodic Theory and Combinatorial Number Theory Supervisors: Author: Dr. Tanja Eisner Jakub Konieczny Prof. Dr. Ale Jan Homburg Dr Piotr Niemiec A thesis submitted in fulfilment of the requirements for the degree of Master of Mathematics in the Department of Mathematics, Vrije Universiteit Amsterdam Instytut Matematyki, Jagiellonian University arXiv:1310.1056v2 [math.DS] 16 Oct 2013 October 2013 Declaration of Authorship I, Jakub Konieczny, declare that this thesis titled “Applications of Ultrafilters in Ergodic Theory and Combinatorial Number Theory” is my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at these Universities. Where I have consulted the published work of others, this is always clearly at- tributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Signed: Date: i “Thanks to my solid academic training, today I can write hundreds of words on virtually any topic without possessing a shred of information, which is how I got a good job in journalism." Dave Barry VRIJE UNIVERSITEIT AMSTERDAM JAGIELLONIAN UNIVERSITY Abstract Faculty of Sciences, Department of Mathematics Wydział Matematyki i Informatyki, Instytut Matematyki Master of Mathematics Applications of Ultrafilters in Ergodic Theory and Combinatorial Number Theory by Jakub Konieczny Ultrafilters are very useful and versatile objects with applications throughout mathemat- ics: in topology, analysis, combinarotics, model theory, and even theory of social choice. Proofs based on ultrafilters tend to be shorter and more elegant than their classical coun- terparts. -
Natural Addition of Ordinals
FORMALIZED MATHEMATICS Vol. 27, No. 2, Pages 139–152, 2019 DOI: 10.2478/forma-2019-0015 https://www.sciendo.com/ Natural Addition of Ordinals Sebastian Koch Johannes Gutenberg University Mainz, Germany1 Summary. In [3] the existence of the Cantor normal form of ordinals was proven in the Mizar system [6]. In this article its uniqueness is proven and then used to formalize the natural sum of ordinals. MSC: 03E10 68T99 03B35 Keywords: ordinal numbers; Cantor normal form; Hessenberg sum; natural sum MML identifier: ORDINAL7, version: 8.1.09 5.57.1355 0. Introduction It is well known that any ordinal number α can be uniquely written as k X βi α = niω , i=1 where k is a natural number, n1, . , nk are positive integers and β1 > . > βk are ordinal numbers. This representation, usually called the Cantor Normal β1 β Form, has been formalized as the tuple hn1ω , . , nkω k i in [3] and the exi- stence of such a sequence that sums up to a given ordinal α has been proven in the same, but the uniqueness was omitted. The basic proof idea for the uniqueness is well known (cf. [1], [2], [4], [5], [8]). This article provides a variant which utilizes the additional closure of ordinals, i.e. that any ordinals α, β, γ with α, β ∈ ωγ also satisfy α + β ∈ ωγ. Usually the 1The author is enrolled in the Johannes Gutenberg University in Mayence, Germany, mailto: [email protected] c 2019 University of Białystok CC-BY-SA License ver. 3.0 or later 139 ISSN 1426–2630(Print), 1898-9934(Online) 140 sebastian koch additional closure is proven using the uniqueness in the literature, but here the additional closure is proven first by using theorems from [3].