Contributions to Descriptive Inner Model Theory by Trevor Miles Wilson Doctor of Philosophy in Mathematics University of California, Berkeley Professor John R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biography Paper – Georg Cantor
Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies. -
Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness . -
An Introduction to Itreated Ultrapowers John Steel
An Introduction to Itreated Ultrapowers John Steel Contents Introduction iii Lecture 1. Measures and Embeddings 1 Lecture 2. Iterated Ultrapowers 5 Lecture 3. Canonical Inner Models and Comparison 11 Lecture 4. Extenders 17 Lecture 5. Linear Iteration via Extenders 23 Lecture 6. Iteration Trees of Length ! 25 Lecture 7. Iteration Trees of Transfinite Length 33 Bibliography 37 i Introduction In these notes, we develop the basic theory of iterated ultrapowers of models of set theory. The notes are intended for a student who has taken one or two semesters of graduate-level set theory, but may have little or no prior exposure to ultrapowers and iteration. We shall develop the pure theory, which centers on the question of well-foundedness for the models produced in various iteration processes. In addition, we consider two sorts of application: (1) Large cardinal hypotheses yield regularity properties for definable sets of reals. Large cardinal hypotheses yield that logical simple sentences are absolute between V and its generic extensions. (2) Large cardinal hypotheses admit canonical inner models having wellorders of R which are simply definable Roughly, applications of type (1) involves using the large cardinal hypotheses to construct complicated iterations. Applications of type (2) involves bounding the complexity of the iterations one can produce under a given large cardinal hypothesis. The notes are organized as follows. In lecture 1, we develop the basic theory of ultrapower Ult(M; U), where M is a transitive model of ZFC and U is an ultrafilter over M. In lecture 2, we develop the pure theory of iterations of such ultrapowers, and present some applications of type (1). -
Axiomatic Set Teory P.D.Welch
Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L. -
O&ONSTRUCTIBLE UNIVERSE and MEASURABLE CARDINALS 0
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Annals of Pure and Applied Logic 30 (1986) 293-320 293 North-Holland o&ONSTRUCTIBLE UNIVERSE AND MEASURABLE CARDINALS Claude SURESON Dkpartement de Mathkmatiques, Universitk de Caen, 1403.2 Caen, France Communicated by A. Nerode Received 23 September 1984 In analogy with K. Godel’s model L, C. Chang [l] formulated the wr- constructible universe C”‘, using the infinitary language L,,,, instead of the language of Set Theory L,,. The cumulative hierarchy of sets obtained in this way has many similarities with the hierarchy of the constructible universe (except for a major point: the axiom of choice [l], [9]). C”’ can also be characterized as the least inner model closed under arbitrary countable sequences. This paper is inspired by results of R. Jensen and J. Silver concerning the existence of O# and the covering property for L. We consider here a stronger notion of indiscernibles for the model C”’ and we say that C”’ satisfies the ‘covering property’ if any set of ordinals X in the universe can be covered by a set in C”’ of cardinality ]X]‘O. The existence of ‘indiscernibles’ for C”’ is also linked to large cardinal assumptions, and our main result (in ZFC) can be summarized as shown in Diagram 1: Diagram 1. The first part is devoted to the study of indiscernibles for PI. We prove the implications (1) and (2). In the second section, we deal with the covering property and show (3). -
Are Large Cardinal Axioms Restrictive?
Are Large Cardinal Axioms Restrictive? Neil Barton∗ 24 June 2020y Abstract The independence phenomenon in set theory, while perva- sive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality prin- ciples depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large cardinal axioms are restrictive. I argue, however, that large cardi- nals are still important axioms of set theory and can play many of their usual foundational roles. Introduction Large cardinal axioms are widely viewed as some of the best candi- dates for new axioms of set theory. They are (apparently) linearly ordered by consistency strength, have substantial mathematical con- sequences for questions independent from ZFC (such as consistency statements and Projective Determinacy1), and appear natural to the ∗Fachbereich Philosophie, University of Konstanz. E-mail: neil.barton@uni- konstanz.de. yI would like to thank David Aspero,´ David Fernandez-Bret´ on,´ Monroe Eskew, Sy-David Friedman, Victoria Gitman, Luca Incurvati, Michael Potter, Chris Scam- bler, Giorgio Venturi, Matteo Viale, Kameryn Williams and audiences in Cambridge, New York, Konstanz, and Sao˜ Paulo for helpful discussion. Two anonymous ref- erees also provided helpful comments, and I am grateful for their input. I am also very grateful for the generous support of the FWF (Austrian Science Fund) through Project P 28420 (The Hyperuniverse Programme) and the VolkswagenStiftung through the project Forcing: Conceptual Change in the Foundations of Mathematics. -
The Axiom of Choice and Its Implications
THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial. -
Small Cardinals and Small Efimov Spaces 3
SMALL CARDINALS AND SMALL EFIMOV SPACES WILL BRIAN AND ALAN DOW Abstract. We introduce and analyze a new cardinal characteristic of the continuum, the splitting number of the reals, denoted s(R). This number is connected to Efimov’s problem, which asks whether every infinite compact Hausdorff space must contain either a non-trivial con- vergent sequence, or else a copy of βN. 1. Introduction This paper is about a new cardinal characteristic of the continuum, the splitting number of the reals, denoted s(R). Definition 1.1. If U and A are infinite sets, we say that U splits A provided that both A ∩ U and A \ U are infinite. The cardinal number s(R) is defined as the smallest cardinality of a collection U of open subsets of R such that every infinite A ⊆ R is split by some U ∈U. In this definition, R is assumed to have its usual topology. The number s(R) is a topological variant of the splitting number s, and is a cardinal characteristic of the continuum in the sense of [2]. Most of this paper is devoted to understanding the place of s(R) among the classical cardinal characteristics of the continuum. Our main achievement along these lines is to determine completely the place of s(R) in Cichoń’s diagram. More precisely, for every cardinal κ appearing in Cichoń’s diagram, we prove either that κ is a (consistently strict) lower bound for s(R), or that κ is a (consistently strict) upper bound for s(R), or else that each of κ< s(R) and s(R) < κ is consistent. -
Elements of Set Theory
Elements of set theory April 1, 2014 ii Contents 1 Zermelo{Fraenkel axiomatization 1 1.1 Historical context . 1 1.2 The language of the theory . 3 1.3 The most basic axioms . 4 1.4 Axiom of Infinity . 4 1.5 Axiom schema of Comprehension . 5 1.6 Functions . 6 1.7 Axiom of Choice . 7 1.8 Axiom schema of Replacement . 9 1.9 Axiom of Regularity . 9 2 Basic notions 11 2.1 Transitive sets . 11 2.2 Von Neumann's natural numbers . 11 2.3 Finite and infinite sets . 15 2.4 Cardinality . 17 2.5 Countable and uncountable sets . 19 3 Ordinals 21 3.1 Basic definitions . 21 3.2 Transfinite induction and recursion . 25 3.3 Applications with choice . 26 3.4 Applications without choice . 29 3.5 Cardinal numbers . 31 4 Descriptive set theory 35 4.1 Rational and real numbers . 35 4.2 Topological spaces . 37 4.3 Polish spaces . 39 4.4 Borel sets . 43 4.5 Analytic sets . 46 4.6 Lebesgue's mistake . 48 iii iv CONTENTS 5 Formal logic 51 5.1 Propositional logic . 51 5.1.1 Propositional logic: syntax . 51 5.1.2 Propositional logic: semantics . 52 5.1.3 Propositional logic: completeness . 53 5.2 First order logic . 56 5.2.1 First order logic: syntax . 56 5.2.2 First order logic: semantics . 59 5.2.3 Completeness theorem . 60 6 Model theory 67 6.1 Basic notions . 67 6.2 Ultraproducts and nonstandard analysis . 68 6.3 Quantifier elimination and the real closed fields . -
An Outline of Algebraic Set Theory
An Outline of Algebraic Set Theory Steve Awodey Dedicated to Saunders Mac Lane, 1909–2005 Abstract This survey article is intended to introduce the reader to the field of Algebraic Set Theory, in which models of set theory of a new and fascinating kind are determined algebraically. The method is quite robust, admitting adjustment in several respects to model different theories including classical, intuitionistic, bounded, and predicative ones. Under this scheme some familiar set theoretic properties are related to algebraic ones, like freeness, while others result from logical constraints, like definability. The overall theory is complete in two important respects: conventional elementary set theory axiomatizes the class of algebraic models, and the axioms provided for the abstract algebraic framework itself are also complete with respect to a range of natural models consisting of “ideals” of sets, suitably defined. Some previous results involving realizability, forcing, and sheaf models are subsumed, and the prospects for further such unification seem bright. 1 Contents 1 Introduction 3 2 The category of classes 10 2.1 Smallmaps ............................ 12 2.2 Powerclasses............................ 14 2.3 UniversesandInfinity . 15 2.4 Classcategories .......................... 16 2.5 Thetoposofsets ......................... 17 3 Algebraic models of set theory 18 3.1 ThesettheoryBIST ....................... 18 3.2 Algebraic soundness of BIST . 20 3.3 Algebraic completeness of BIST . 21 4 Classes as ideals of sets 23 4.1 Smallmapsandideals . .. .. 24 4.2 Powerclasses and universes . 26 4.3 Conservativity........................... 29 5 Ideal models 29 5.1 Freealgebras ........................... 29 5.2 Collection ............................. 30 5.3 Idealcompleteness . .. .. 32 6 Variations 33 References 36 2 1 Introduction Algebraic set theory (AST) is a new approach to the construction of models of set theory, invented by Andr´eJoyal and Ieke Moerdijk and first presented in [16]. -
A Premouse Inheriting Strong Cardinals from $ V$
A premouse inheriting strong cardinals from V Farmer Schlutzenberg1 Abstract We identify a premouse inner model L[E], such that for any coarsely iterable background universe R modelling ZFC, L[E]R is a proper class premouse of R inheriting all strong and Woodin cardinals from R. Moreover, for each α ∈ OR, L[E]R|α is (ω, α)-iterable, via iteration trees which lift to coarse iteration trees on R. We prove that (k + 1)-condensation follows from (k + 1)-solidity together with (k,ω1 + 1)-iterability (that is, roughly, iterability with respect to normal trees). We also prove that a slight weakening of (k + 1)-condensation follows from (k,ω1 + 1)-iterability (without the (k + 1)-solidity hypothesis). The results depend on the theory of generalizations of bicephali, which we also develop. Keywords: bicephalus, condensation, normal iterability, inner model, strong cardinal 2010 MSC: 03E45, 03E55 1. Introduction M Consider fully iterable, sound premice M,N with M|ρ = N|ρ and ρω = ρ = N ρω . Under what circumstances can we deduce that either M E N or N E M? This conclusion follows if ρ is a cutpoint of both models. By [2, Lemma 3.1],1 the conclusion also follows if ρ is a regular uncountable cardinal in V and there is no premouse with a superstrong extender. We will show that if M||ρ+M = N||ρ+N and M,N have a certain joint iterability property, then M = N. The joint iterability property and the proof that M = N, is motivated by arXiv:1506.04116v3 [math.LO] 27 Apr 2020 the bicephalus argument of [3, §9]. -
UC Irvine UC Irvine Electronic Theses and Dissertations
UC Irvine UC Irvine Electronic Theses and Dissertations Title Axiom Selection by Maximization: V = Ultimate L vs Forcing Axioms Permalink https://escholarship.org/uc/item/9875g511 Author Schatz, Jeffrey Robert Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Axiom Selection by Maximization: V = Ultimate L vs Forcing Axioms DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Philosophy by Jeffrey Robert Schatz Dissertation Committee: Distinguished Professor Penelope Maddy, Chair Professor Toby Meadows Dean’s Professor Kai Wehmeier Professor Jeremy Heis 2019 All materials c 2019 Jeffrey Robert Schatz DEDICATION To Mike and Lori Schatz for always encouraging me to pursue my goals AND In memory of Jackie, a true and honest friend. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS iv CURRICULUM VITAE vi ABSTRACT OF THE DISSERTATION vii CHAPTER 1: Two Contemporary Candidates for A Strong Theory of Sets 1 1 The Axiomatization of Set Theory and The Question of Axiom Selection 2 1.1 The Inner Model Program 14 1.2 The Forcing Axiom Program 27 1.3 How to Settle This Dispute? 36 1.4 CHAPTER 2: Axiom Selection and the Maxim of ‘Maximize’ 38 2 ‘Maximize’ as a Methodological Maxim 39 2.1 Two Notions of Maximize 43 2.2 Re-characterizing M-Max for Extensions of ZFC 50 2.3 CHAPTER 3: Applying ‘Maximize’ to Contemporary Axiom Candidates 53 3 Towards a Theory for Ultimate L 54 3.1 S-Max: