November 2006 Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Epilist 1.0: a Global Checklist of Vascular Epiphytes
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong. -
Genome Relationships in the Oncidium Alliance A
GENOME RELATIONSHIPS IN THE ONCIDIUM ALLIANCE A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN HORTICULTURE MAY 1974 By Uthai Charanasri Dissertation Committee: Haruyuki Kamemoto, Chairman Richard W. Hartmann Peter P, Rotar Yoneo Sagawa William L. Theobald We certify that we have read this dissertation and that in our opinion it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Horticulture. DISSERTATION COMMITTEE s f 1 { / r - e - Q TABLE OF CONTENTS Page LIST OF T A B L E S .............................................. iii LIST OF ILLUSTRATIONS...................................... iv INTRODUCTION ................................................ 1 REVIEW OF LITERATURE.................. 2 MATERIALS AND M E T H O D S ...................................... 7 RESULTS AND DISCUSSION ....................................... 51 Intraspecific Self- and Cross-Pollination Studies ........ Intrasectional Cross Compatibility within the Oncidium G e n u s ............................... 58 Intersectional and Intergeneric Hybridizations .......... 80 Chromosome Numbers ..................................... 115 K a r y o t y p e s ............................................ 137 Meiosis, Sporad Formation, and Fertility of Species Hybrids ............................. 146 Morphology of Species and Hybrids ..................... 163 General Discussion ................................... 170 SUMMARY -
Oncidium Intergenerics
NEWSLETTER January 2020 Volume 15 Issue #1 CLUB NEWS January 7, 2020 Monthly SAOS Meeting by Janis Croft Welcome and Thanks. President Tom Sullivan opened the meeting at 7:00 pm with a 72 attendees. Events VP, Dianne Batchhelder thanked Dottie Your catasetums are likely sleeping now so just look in for bringing in her Chocolate on them every week looking for signs of the new growth Pudding Cake and then which is the time to repot, if they need repotting this year. thanked all who volunteered If you need any potting supplies, email info@ and worked so hard to make staugorchidsociety.org and we will have it ready for you Philip Hamilton our December holiday party at the next meeting. Potting Mix and Fertilizers, $5 each; a success including Mary Durable Plant Tags, $5 for 30 tags; 2020 Calendars, $15 Ann Bell for her Pork Roast (Dianne can provide the recipe) or 2 for $25; Slotted Orchid Pots, 3 to 6 inch pots, $1 to $4 and Susan Smith for her lasagna and Yvonne and Bob for each. washing all the tablecloths! In addition, thanks also went Linda Stewart asked all of the January birthday people to Joey, Celia and Dottie for setting up the refreshments to raise their hands to received their free raffle ticket. and Tom and Bob for set up and Charlie and Doug for Then she announced that if you know of anyone in need breakdown. of a cheering up or a get well card, email her at info@ Membership VP Linda Stewart announced our six new staugorchidsociety.org. -
Inherently Slow Growth in Two Caribbean Epiphytic Species: a Demographic Approach
Journal of Vegetation Science 13: 527-534, 2002 © IAVS; Opulus Press Uppsala. Printed in Sweden - Inherently slow growth of epiphytes - 527 Inherently slow growth in two Caribbean epiphytic species: A demographic approach Schmidt, Gerold1 & Zotz, Gerhard1,2* 1*Lehrstuhl für Botanik II der Universität Würzburg, D-97082 Würzburg, Germany; 2Smithsonian Tropical Research Institute, Apdo 2072 Balboa, Panama; *Correspondencing author; Present address Universität Basel, Schönbeinstrasse 6, CH-4 056 Basel, Switzerland; Fax +41612673504; E-mail [email protected] Abstract. In relation to the drought-prone and nutrient-poor Epiphyte habitats are mostly referred to as drought- habitat, vascular epiphytes are routinely referred to as inher- prone and nutrient-poor (e.g. Benzing 2000). Epiphyte ently slow-growing plants, although actual evidence is rare. growth and development is thus generally considered to To test this notion we measured in situ growth of the understorey be very slow (e.g. Lüttge 1989; Benzing 1990, 2000), Aspasia principissa Vriesea orchid and the tank bromeliad although only a few studies provide a quantitative basis for sanguinolenta, and, for the latter species, also the growth under favourable conditions in the greenhouse. Using growth this conclusion. For example, in a study on the population analysis we show: (1) that in an intraspecific comparison, structure of Tillandsia circinnata, Benzing (1981) esti- small to intermediate individuals yield the highest relative mated that this bromeliad requires 8-10 yr to reach repro- growth rates (RGR) in situ: A. principissa: 1.6 10-3 d-1; V. ductive size, and Larson (1992) predicts first flowering of sanguinolenta: 3.3 10-3 d-1; (2) that the bromeliad reaches the orchid Encyclia tampensis at an age of ca. -
Comparative Vegetative Anatomy and Systematics of Oncidiinae (Maxillarieae, Orchidaceae) William Louis Stern University of Florida
CORE Metadata, citation and similar papers at core.ac.uk Provided by The Keep Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 2006 Comparative vegetative anatomy and systematics of Oncidiinae (Maxillarieae, Orchidaceae) William Louis Stern University of Florida Barbara S. Carlsward Eastern Illinois University, [email protected] Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Biology Commons Recommended Citation Stern, William Louis and Carlsward, Barbara S., "Comparative vegetative anatomy and systematics of Oncidiinae (Maxillarieae, Orchidaceae)" (2006). Faculty Research & Creative Activity. 263. http://thekeep.eiu.edu/bio_fac/263 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. Comparative vegetative anatomy and systematics of the Oncidiinae (Maxillarieae, Orchidaceae) WILLIAM LOUIS STERN and BARBARA S. CARLSWARD Abstract Subtribe Oncidiinae comprises a vegetatively heterogeneous assemblage of species that has persistently been incapable of organization. Anatomy was considered to be a possible means to resolve the perplexity of relationships amongst the constituent taxa. The consistent occurrence of a foliar hypodermis, homogeneous mesophyll, conical silica bodies in stegmata, and ubiquitous fibre bundles in leaves provides a matrix for linKing the taxa, as do the parenchymatous pith and O-thickened endodermal cell walls in roots. However, the strict consensus of the 40 genera studied was completely unresolved, suggesting that vegetative characters alone are insufficient to assess the relationships amongst these taxa, a conclusion also reached for the remainder of Maxillarieae. -
University of Florida Thesis Or Dissertation Formatting
A MONOGRAPH OF THE GENUS LOCKHARTIA (ORCHIDACEAE: ONCIDIINAE) By MARIO ALBERTO BLANCO-COTO A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2011 1 © 2011 Mario Alberto Blanco-Coto 2 To my parents, who have always supported and encouraged me in every way. 3 ACKNOWLEDGMENTS Many individuals and institutions made the completion of this dissertation possible. First, I thank my committee chair, Norris H. Williams, for his continuing support, encouragement and guidance during all stages of this project, and for providing me with the opportunity to visit and do research in Ecuador. W. Mark Whitten, one of my committee members, also provided much advice and support, both in the lab and in the field. Both of them are wonderful sources of wisdom on all matters of orchid research. I also want to thank the other members of my committee, Walter S. Judd, Douglas E. Soltis, and Thomas J. Sheehan for their many comments, suggestions, and discussions provided. Drs. Judd and Soltis also provided many ideas and training through courses I took with them. I am deeply thankful to my fellow lab members Kurt Neubig, Lorena Endara, and Iwan Molgo, for the many fascinating discussions, helpful suggestions, logistical support, and for providing a wonderful office environment. Kurt was of tremendous help in the lab and with Latin translations; he even let me appropriate and abuse his scanner. Robert L. Dressler encouraged me to attend the University of Florida, provided interesting discussions and insight throughout the project, and was key in suggesting the genus Lockhartia as a dissertation subject. -
November 1992 Newsletter
Odontoglossum Alliance shortened cross to flower cycle. He illustrated Odontoglossum his techniques with excellent visual material including many suggestions for proceeding from Alliance Meeting the flask through community pot to flowering. Bob has promised to write up his talk to be printed in a future newsletter. a Success The John Day scrapbooks were a monumental The Odontoglossum Alliance held its annual achievement produced in the period of mid to late meeting in conjunction with the Eastern Orchid ISOO’s. Mr. Michael Tibbs of Stonehurst Congress in Boston, Massachusetts on 23 Nurseries had completed a study of these books October. Bob Dugger, Program Chairman, now located at Kew Gardens. Michael extracted a introduced each of the four speakers. Allan large amount of interesting material on Moon, Curator, Eric Young Orchid Foundation odontoglossums produced by Day. Michael’s described their efforts to create albino illustrations and talk was interesting and odontoglossums. This work had started under informative. Day produced colored flowers, in Mr. Charlesworth, but had lain in neglect water color with great detail, but often left the following his death in 1920. The Foundation had rest of the plant vaguely sketched. Day also pursued a course of producing albino flowers included letters, comments, and clippings from using the original Charlesworth progress and gardeners publications. combining it with recent chromosome count The meeting was attended by about 150 people work of Don Wimber producing amazing and who where very enthusiastic about the high beautiful results. Allan showed slides of large quality of the program. Following the lecture pure white odontoglossums, white with yeUow series, the Alliance held an auction of fine markings, and clear yellows. -
Orchidaceae Flora of Joinville, Santa Catarina, Brazil Flora De Orchidaceae De Joinville, Santa Catarina, Brasil
Acta Biológica Catarinense 06 Jan-Jun;3():36-48 Orchidaceae Flora of Joinville, Santa Catarina, Brazil Flora de Orchidaceae de Joinville, Santa Catarina, Brasil Werner Siebje MANCINELLI,3 & Karin ESEMANN-QUADROS ABSTRACT Recebido: 7 jan. 06 The objective of this work was to conduct a floristic study of Orchidaceae in the municipality Aceito: 9 mar. 06 of Joinville (Santa Catarina, Brazil), which occurred from 2006 to 2015. The municipality is mainly covered with Atlantic Forest between 0 and 1,335 m elevation. For the family, 211 species within 90 genera were recorded. The richest genera are Epidendrum (17 spp.), Pabstiella (15 spp.), Acianthera (14 spp.), Anathallis (8 spp.) and Octomeria (8 spp.). The majority of the species are epiphytes (82%), 11% are terrestrial, and the remaining 7% are hemi-epiphytes, rupicolous or myco-heterotrophic. Two species, Grobya guiselii and Homalopetalum joinvillense, are known only from Joinville. Keywords: Atlantic Forest; Floristic; Orchids; South Brazilian. RESUMO Este trabalho teve como objetivo realizar o estudo florístico de Orchidaceae em Joinville (Santa Catarina – Brasil), que ocorreu entre 2006 e 2015. O município é caracterizado principalmente pela mata atlântica nativa, que pode ser encontrada entre as altitudes de 0 e 1.335 m. A família possui 211 espécies distribuídas em 90 gêneros. Os gêneros mais ricos são Epidendrum (17 spp.), Pabstiella (15 spp.), Acianthera (14 spp.), Anathallis (8 spp.) e Octomeria (8 spp.). A maioria das espécies ocorre como epífita (82%), 11% são terrícolas, e hemiepífitas, rupícolas e mico-heterotróficas representam 7%. Até o momento, duas espécies são conhecidas apenas para Joinville: Grobya guiselii e Homalopetalum joinvillense. -
Calcium Oxalate Crystals in Monocotyledons: a Review of Their Structure and Systematics
Annals of Botany 84: 725–739, 1999 Article No. anbo.1999.0975, available online at http:\\www.idealibrary.com on Calcium Oxalate Crystals in Monocotyledons: A Review of their Structure and Systematics CHRISTINA J. PRYCHID and PAULA J. RUDALL Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK Received: 11 May 1999 Returned for Revision: 23 June 1999 Accepted: 16 August 1999 Three main types of calcium oxalate crystal occur in monocotyledons: raphides, styloids and druses, although intermediates are sometimes recorded. The presence or absence of the different crystal types may represent ‘useful’ taxonomic characters. For instance, styloids are characteristic of some families of Asparagales, notably Iridaceae, where raphides are entirely absent. The presence of styloids is therefore a synapomorphy for some families (e.g. Iridaceae) or groups of families (e.g. Philydraceae, Pontederiaceae and Haemodoraceae). This paper reviews and presents new data on the occurrence of these crystal types, with respect to current systematic investigations on the monocotyledons. # 1999 Annals of Botany Company Key words: Calcium oxalate, crystals, raphides, styloids, druses, monocotyledons, systematics, development. 1980b). They may represent storage forms of calcium and INTRODUCTION oxalic acid, and there has been some evidence of calcium Most plants have non-cytoplasmic inclusions, such as starch, oxalate resorption in times of calcium depletion (Arnott and tannins, silica bodies and calcium oxalate crystals, in some Pautard, 1970; Sunell and Healey, 1979). They could also of their cells. Calcium oxalate crystals are widespread in act as simple depositories for metabolic wastes which would flowering plants, including both dicotyledons and mono- otherwise be toxic to the cell or tissue. -
Eliokarmos Humanii (Hyacinthaceae, Ornithogaloideae), a New Species from Namaqualand in South Africa and a New Combination in the Genus
Phytotaxa 474 (1): 087–092 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.474.1.9 Eliokarmos humanii (Hyacinthaceae, Ornithogaloideae), a new species from Namaqualand in South Africa and a new combination in the genus MARIO MARTÍNEZ-AZORÍN1,3*, MANUEL B. CRESPO1,4, MARÍA ÁNGELES ALONSO-VARGAS1,5 & MICHAEL PINTER2,6 1 Depto. de Ciencias Ambientales y Recursos Naturales (dCARN), Universidad de Alicante, P. O. Box 99, E-03080 Alicante, Spain. 2 Institute of Biology, NAWI Graz, Division Plant Sciences, Karl-Franzens University Graz, Holteigasse 6, 8010 Graz, Austria. 3 �[email protected]; https://orcid.org/0000-0002-2605-9575 4 �[email protected]; https://orcid.org/0000-0002-3294-5637 5 �[email protected]; https://orcid.org/0000-0003-3768-9203 6 �[email protected]; https://orcid.org/0000-0002-6055-6989 *Author for correspondence. Abstract A new species of the southern Africa endemic genus Eliokarmos, that includes the well-known chincherinchees, is described from the vicinity of Kotzesrus, Northern Cape Province of South Africa. Eliokarmos humanii sp. nov. is unique in the genus based on its single, slightly fleshy, suborbicular, convex leaf with ciliate margin, and the short subspiciform inflorescence with almost sessile flowers. A complete description is presented for this species, and data on morphology, ecology, and distribution are reported. In addition, Ornithogalum richtersveldensis, recently described from northwestern South Africa, is transferred to Eliokarmos based on its morphology and biogeography, and a new combination is presented for this species in the latter genus. -
Orchid Name Abbreviations List
ALPHABETICAL LIST OF STANDARD ABBREVIATIONS FOR NATURAL AND HYBRID GENERIC NAMES Acw. = Aberconwayara All. = Aganella Angcst. = Angulocaste Abr. = Aberrantia Agn. = Aganisia Ank. = Anikaara Acp. = Acampe Agt. = Aganopeste Akr. = Ankersmitara Apd. = Acampodorum Agsp. = Agasepalum Anct. = Anoectochilus Acy. = Acampostylis Agubata = Agubata Atd. = Anoectodes A. = Aceras Aitk. = Aitkenara Ano. = Anoectogoodyera Ah. = Acerasherminium Al. = Alamania Anota = Anota Actg. = Aceratoglossum Agwa. = Alangreatwoodara Ayp. = Ansecymphyllum Acba. = Acinbreea Atc. = Alantuckerara Asg. = Anselangis Acn. = Acineta Aat. = Alaticaulia Aslla. = Ansellia Ain. = Acinopetala Atg. = Alatiglossum Asdm. = Ansidium Aip. = Aciopea Alc. = Alcockara Arpt. = Anteriocamptis Akm. = Ackermania Alxra. = Alexanderara Ahc. = Anterioherorchis Aks. = Ackersteinia Alcra. = Aliceara Atml. = Anteriomeulenia Aco. = Acoridium Alna. = Allenara Antr. = Anteriorchis Apa. = Acrolophia Aln. = Allioniara Atsp. = Anterioserapias Aro. = Acronia Alph. = Alphonsoara Anth. = Anthechostylis Acro. = Acropera Alv. = Alvisia Antg. = Antheglottis Ada = Ada Amal. = Amalia Anr. = Antheranthe Adh. = Adachilum Amals. = Amalias Alla. = Antilla Adg. = Adacidiglossum Amb. = Amblostoma Apr. = Apoda-prorepentia Adcm. = Adacidium Amn. = Amenopsis Aea. = Appletonara Adgm. = Adaglossum Am. = Amesangis Arcp. = Aracampe Adn. = Adamantinia Ams. = Amesara Ara. = Arachnadenia Adm. = Adamara Ame. = Amesiella Arach. = Arachnis Adps. = Adapasia Aml. = Amesilabium Act. = Arachnocentron Adl. = Adelopetalum Ami. = Amitostigma -
Alphabetical One-Table List of Genera and Intergeneric Combinations
ALPHABETICAL ONE-TABLE LIST OF GENERA AND INTERGENERIC COMBINATIONS (with parentage, where applicable, and standard abbreviations) This list contains the names and intergeneric combinations of all genera, including hybrid genera, which occur in current use in orchid hybrid registration as at 31st. December 2007, regardless of whether they appear in the main list of this volume. The arrangement of the entries is in One-Table format, and for intergeneric combinations is as follows: Under the name of each natural genus is entered (inset) each combination in which it occurs together with the name (following the = sign) of the intergeneric name which represents that combination. Each such combination appears once under the name of the natural genus concerned, the entries being in the alphabetical sequence of the remaining “constituent” genera which, in any entry, are themselves alphabetically arranged. Thus in the course of the whole list each bigeneric combination occurs twice, each trigeneric combination occurs three times, and so on. For example, in addition to the entry of BRASSOLAELIOCATTLEYA in bold type in its own alphabetical position, the combination for Brassolaeliocattleya appears three times, inset: Once under BRASSAVOLA as × Cattleya × Laelia = Brassolaeliocattleya Once under CATTLEYA as × Brassavola × Laelia = Brassolaeliocattleya Once under LAELIA as × Brassavola × Cattleya = Brassolaeliocattleya ACAMPE (Acp.) = Natural genus × Arachnis ................... =Aracampe × Armodorum .................. =Acampodorum × Rhynchostylis