Nitric Oxide 3Rd Edition Pdf, Epub, Ebook

Total Page:16

File Type:pdf, Size:1020Kb

Nitric Oxide 3Rd Edition Pdf, Epub, Ebook NITRIC OXIDE 3RD EDITION PDF, EPUB, EBOOK Louis J Ignarro | 9780128043196 | | | | | Nitric Oxide 3rd edition PDF Book It is an opening or widening of blood vessels that results from relaxation of the muscular walls of the vessels. Save my name, email, and website in this browser for the next time I comment. For regional delivery times, please check When will I receive my book? Chemical formula. These immune responses are frequently successful in controlling and then clearing the virus, using both cellular effectors such as natural killer NK cells and cytolytic T lymphocytes, and soluble factors such as interferons. Exercise is another natural way to increase levels in the bod, naturally. Inhaled nitric oxide iNO produces selective pulmonary vasodilation and reduces the pulmonary vascular resistance PVR associated with pulmonary hypertension PH , preferentially increasing the partial pressure of arterial oxygen PaO 2 in better ventilated areas of the lung. External MSDS. At levels of ppm, nitric oxide is immediately dangerous to life and health. Who should take dietary supplements that increase nitric oxide? Cath Lab Digest. The Traube reaction [7] is the addition of a two equivalents of nitric oxide onto an enolate , giving a diazeniumdiolate also called a nitrosohydroxylamine. Louis J. Download as PDF Printable version. So-called NONOate compounds are also used for nitric oxide generation. Intensive exploration of the diverse therapeutic effects that are biologically plausible is needed, warranted, and is well underway. With NO 2 , also a radical, NO combines to form the intensely blue dinitrogen trioxide : [4]. The role of nitric oxide in epigenetic regulation. Weaning protocols for the dose of iNO coupled with responsive oxygen supplementation greatly reduce the risk of rebound. There are two important criteria that must be established for one to be awarded the Nobel Prize in Physiology or Medicine: 1 original discovery, and 2 benefit to humankind. February 22nd, Niteworks is a natural and safe way to boost the Nitric Oxide levels in your body. ATC code. This is just one nitric oxide pathway that helps fight off infection in the body. The current COVID pandemic has fostered the launch of numerous iNO trials with widely varying methodologies, target patient cohorts, and dosing regimens. View on ScienceDirect. Kale Walnut Pesto Pasta with Salmon. Interactive image. Molecules detected in outer space. Inhaled nitric oxide side effects can include blurred vision, confusion, dizziness and sweating. For nearly two decades, inhaled NO has been a life-saving intervention for hundreds of thousands of patients in Europe and the US, especially hospitalized infants to treat acute pulmonary hypertension. A New Adventure April 11th, Please join me on my new adventure. Heart-Healthy Pumpkin-Ginger Soup. Update on nitrite reduction in ischaemic disease: Mechanisms and clinical translation It has been postulated that iNO-induced pulmonary vasodilation might improve the flow of sickled cells in these vascular beds and relieve obstruction, pain, and tissue hypoxia. A group of fluorescent dye indicators that are also available in acetylated form for intracellular measurements exist. Nitric Oxide, also known as NO, is a natural signaling molecule produced in the arteries, brain and many other organs in the body. Powered by. Read more. Asymmetric-Dimethylarginine Current Pharmaceutical Design. Nitric oxide reacts with fluorine , chlorine , and bromine to form the nitrosyl halides, such as nitrosyl chloride :. Axe on Facebook 8 Dr. CAS Number. Chemistry of the Elements 2nd ed. What Is Nitric Oxide? GABA A receptor positive modulators. The iron II sulfate route is simple and has been used in undergraduate laboratory experiments. Thanks in advance for your time. Nitric Oxide 3rd edition Writer LC Lo lowest published. We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit. Beyond the lung, NO is an essential signaling molecule and is also involved in a number of important and diverse physiologic processes throughout the body, including modulating immunological host defense and inhibiting platelet aggregation. In lung transplantation, iNO is administered in an effort to attenuate ischemia-reperfusion injury, which is an early cause of transplant rejection. He has broad and extensive experience in the molecular and chemical biology of the nitric oxide-cyclic GMP signaling systems. Nitric oxide is a free radical , i. Calmidazolium W Sorry, this product is currently out of stock. Heart Health Overview. Remember, NitricOxide is made in your body to promote hearthealth as well as the health of your brain and digestive system. Chemical formulas. Evidence showing a benefit of iNO in ARDS in adults continues to accumulate slowly, but large randomized trials are needed to determine a potential impact on survival. Inhaled nitric oxide iNO produces selective pulmonary vasodilation and reduces the pulmonary vascular resistance PVR associated with pulmonary hypertension PH , preferentially increasing the partial pressure of arterial oxygen PaO 2 in better ventilated areas of the lung. One group of immune cells in particular, activated macrophages, inhibit pathogen replication by releasing a variety of effector molecules, including NO. Heart-Healthy Kale Walnut Pesto. The NO group can also bridge between metal centers through the nitrogen atom in a variety of geometries. Follow DrIgnarro. By Charles V. Aluminium monochloride Aluminium monofluoride Aluminium monoxide Argonium Carbon monophosphide Carbon monosulfide Carbon monoxide Carborundum Cyanogen radical Diatomic carbon Fluoromethylidynium Helium hydride ion Hydrogen chloride Hydrogen fluoride Hydrogen molecular Hydroxyl radical Iron II oxide Magnesium monohydride cation Methylidyne radical Nitric oxide Nitrogen molecular Nitrogen monohydride Nitrogen sulfide Oxygen molecular Phosphorus monoxide Phosphorus mononitride Potassium chloride Silicon carbide Silicon mononitride Silicon monoxide Silicon monosulfide Sodium chloride Sodium iodide Sulfur monohydride Sulfur monoxide Titanium oxide. You can also boost your nitric oxide levels naturally by eating foods rich in nitrates. The defective arginine-nitric oxide pathway in sickle cell disease Etomidate Metomidate Propoxate. Nitric Oxide NO is a gas that is produced by the body and has the unique ability to relax blood vessels in the lungs without causing a dangerous drop in systemic blood pressure, which can be dangerous and is a significant disadvantage with other currently available therapies. For these discoveries, he was awarded the Nobel Prize in Physiology or Medicine. I have been sharing nitricoxideminutes on instagram dr. A concise history of the discovery of mammalian nitric oxide nitrogen monoxide biogenesis. Subscribe To Our Feed. In Nitric Oxide, Third Edition. View on ScienceDirect. In studies spurred by the viral severe acute respiratory syndrome SARS outbreak in the early s, NO demonstrated an antiviral effect against the strain of coronavirus SARS CoV associated with that disease by significantly inhibiting the viral replication cycle via two distinct mechanisms. Axe on Google Plus Dr. In the laboratory, nitric oxide is conveniently generated by reduction of dilute nitric acid with copper :. NO is a gaseous signaling molecule. Much work is being performed in this area, but true therapeutic advances will require both proof of concept for a treatment effect as well as optimization of the logistic and economic issues around ambulatory use. Read more. Powered by. Thromb Haemost ; — S-nitrosothiols and nitric oxide biology and therapeutics 5. With recent links to the role of nitric oxide in the expression of healthy benefits of controlled diet and aerobic exercise, and the reactions of nitric oxide that can impact cell signaling, this book provides a comprehensive resource during a time when increased research attention is being paid across the fields of pharmacology, biochemistry, cell and molecular biology, chemistry, immunology, neurobiology, immunology, nutrition sciences, drug development and the clinical management of both acute and chronic diseases. Views Read Edit View history. It has been proposed that iNO might be an important asset in managing bacterial pathogens that are resistant to multiple conventional antimicrobial agents, and its coincident pulmonary anti-inflammatory effects make it a good candidate for aiding in cystic fibrosis management as well. Click below to subscribe to my RSS feed and have all of the newest Heart Health Initiative articles automatically delivered to you! Nitric oxide NO is a compound produced by many cells of the body, including the vascular endothelial cells of the lung. The discovery If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website. BIMU-8 Zacopride. However, due to transit disruptions in some geographies, deliveries may be delayed. Perspective 1. Nitric Oxide 3rd edition Reviews This site uses Akismet to reduce spam. R8 , R23 , R34 , R View on ScienceDirect. The current inhaled NO treatment is transported and stored in cumbersome tanks, which have the following drawbacks: Costly fleets of compressed gas cylinders limit availability to developed markets with infrastructure to transport, maintain, return and refill tanks of a gaseous pharmaceutical Compressed gas cylinders make it difficult to transport patients between facilities and within a hospital Inhaled
Recommended publications
  • NBO Applications, 2020
    NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020.
    [Show full text]
  • Ubiquitous Argonium \(Arh+\) in the Diffuse Interstellar Medium: A
    A&A 566, A29 (2014) Astronomy DOI: 10.1051/0004-6361/201423727 & c ESO 2014 Astrophysics Ubiquitous argonium (ArH+) in the diffuse interstellar medium: A molecular tracer of almost purely atomic gas P. Schilke1, D. A. Neufeld2, H. S. P. Müller1, C. Comito1, E. A. Bergin3, D. C. Lis4;5, M. Gerin6, J. H. Black7, M. Wolfire8, N. Indriolo2, J. C. Pearson9, K. M. Menten10, B. Winkel10, Á. Sánchez-Monge1, T. Möller1, B. Godard6, and E. Falgarone6 1 I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany e-mail: [email protected] 2 The Johns Hopkins University, Baltimore, MD 21218, USA 3 Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042, USA 4 California Institute of Technology, Pasadena, CA 91125, USA 5 Sorbonne Universités, Université Pierre et Marie Curie, Paris 6, CNRS, Observatoire de Paris, UMR 8112 LERMA, Paris, France 6 LERMA, CNRS UMR 8112, Observatoire de Paris & École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France 7 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden 8 Astronomy Department, University of Maryland, College Park, MD 20742, USA 9 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 10 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany Received 28 February 2014 / Accepted 29 March 2014 ABSTRACT Aims. We describe the assignment of a previously unidentified interstellar absorption line to ArH+ and discuss its relevance in the + context of hydride absorption in diffuse gas with a low H2 fraction.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Understanding the Bonding of Second Period Diatomic Molecules Spdf Vs MCAS
    Understanding the Bonding of Second Period Diatomic Molecules Spdf vs MCAS By Joel M Williams (text and images © 2013) The html version with updates and higher resolution images is at the author’s website (click here) Abstract The current spdf and MO modeling of chemical molecules are well-established, but do so by continuing to assume that non-classical physics is operating. The MCAS electron orbital model is an alternate particulate model based on classical physics. This paper describes its application to the diatomic molecules of the second period of the periodic table. In doing so, it addresses their molecular electrostatics, bond strengths, and electron affinities. Particular attention is given to the anomalies of the carbon diatom. Questions are raised about the sensibleness of the spdf model’s spatial ability to contain two electrons on an axis between diatoms and its ability to form π-bonds from parallel p-orbitals located over the nuclei of each atom. Nitrogen, carbon monoxide, oxygen, and fluorine all have the same inter-nuclei bonding: all “triple bonds” of varying strength caused by different numbers of anti-bonding electrons. The spdf model was devised for single atoms by physicists and mathematicians. Kowtowing to them, chemists produce hybrid orbitals to explain how atoms could actually form molecules. Drawing these hybrids and meshing them on paper might look great, but, constrained to measured interatomic physical dimensions and electrostatic interactions, bonding based on the spdf-hybrids (sp, sp2, sp3) is illogical. To have even one electron occupy the “bond” region between the nuclei of diatomic molecules, at the expense of reduced coverage elsewhere, does not make sense for stable molecules.
    [Show full text]
  • Discharge Plasmas of Molecular Gases
    / J ¥4~r~~~: 'o j~ ~7 ~,~U;~I u t= ~]f~LL*~ ~~~~~~; 4. Isotope Separation in Discharge Plasmas of Molecular Gases EZOUBTCHENKO, Alexandre N.t, AKATSUKA Hiroshi and SUZUKI Masaaki Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan (Received 25 December 1997) Abstract We review the theoretical principles and the experimental methods of isotope separation achieved through the use of discharge plasmas of molecular gases. Isotope separation has been accomplished in various plasma chemical reactions. It is experimentally and theoretically shown that a state of non- equilibrium in the plasmas, especially in the vibrational distribution functions, is essential for the isotope redistribution in the reagents and products. Examples of the reactions, together with the isotope separ- ation factors known up to the present time, are shown to separate isotopic species of carbon, nitrogen and oxygen molecules in the plasma phase, generated by glow discharge and microwave discharge. Keywords: isotope separation, vibrational nonequilibrium, glow discharge, microwave discharge, plasma chemistry 4.1 Introduction isotopic species will be redistributed between the rea- Plasmas generated by electric discharge of molecu- gents and the products. We can elaborate a new lar gases under moderate pressures (10 Torr < p < method of the plasma isotope separation for light ele- 200 Torr) are usually in a state of nonequilibrium. We ments . can define various temperatures according to the kine- There were a few experimental studies of isotope tics of various particles in such plasmas, for example, separation phenomena in the nonequilibrium electric electron temperature ( T*), gas translational temperature discharge. Semiokhin et al. measured C02 enrichment ( To), gas rotational temperature ( TR) and vibrational in i3C02 and 12C160180 with a separation factor a ~ temperature ( Tv), where the relationships T* > Tv ;~ 1.01 in the C02 Silent (barrier) discharge in the pres- TR- To usually hold.
    [Show full text]
  • ©2018 Alexander Hook ALL RIGHTS RESERVED
    ©2018 Alexander Hook ALL RIGHTS RESERVED A DFT STUDY OF HYDROGEN ABSTRACTION FROM LIGHT ALKANES: Pt ALLOY DEHYDROGENATION CATALYSTS AND TIO2 STEAM REFORMING CATALYSTS By ALEXANDER HOOK A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Chemical and Biochemical Engineering Written under the direction of Fuat E. Celik And approved by __________________________ __________________________ __________________________ __________________________ New Brunswick, New Jersey May, 2018 ABSTRACT OF THE DISSERTATION A DFT STUDY OF HYDROGEN ABSTRACTION FROM LIGHT ALKANES: Pt ALLOY DEHYDROGENATION CATALYSTS AND TiO2 STEAM REFORMING CATALYSTS By ALEC HOOK Dissertation Director: Fuat E. Celik Sustainable energy production is one of the biggest challenges of the 21st century. This includes effective utilization of carbon-neutral energy resources as well as clean end-use application that do not emit CO2 and other pollutants. Hydrogen gas can potentially solve the latter problem, as a clean burning fuel with very high thermodynamic energy conversion efficiency in fuel cells. In this work we will be discussing two methods of obtaining hydrogen. The first is as a byproduct of light alkane dehydrogenation where we obtain a high value olefin along with hydrogen gas. The second is in methane steam reforming where hydrogen is the primary product. Chapter 1 begins by introducing the reader to the current state of the energy industry. Afterwards there is an overview of what density functional theory (DFT) is and how this computational technique can elucidate and complement laboratory experiments. It will also contain the general parameters and methodology of the VASP software package that runs the DFT calculations.
    [Show full text]
  • A Dicationic Iminophosphane Ying Kai Loh, Chitra Gurnani, Rakesh Ganguly, and Dragoslav Vidović*
    A Dicationic Iminophosphane Ying Kai Loh, Chitra Gurnani, Rakesh Ganguly, and Dragoslav Vidović* Department of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371. Supporting Information Placeholder ABSTRACT: A novel dicationic system containing a PN frag- ment has been synthesized and structurally characterized. Accord- ing to the solid state analysis and theoretical investigation the dica- tionic iminophosphane resonance from is the most appropriate de- scription for the dication. However, the contribution from the phos- phorus mononitride resonance form is not negligible. Neutral two-eletron donor carbenes have proven to be quite versatile ligands for isolation of a wide variety of novel main group 1-4 species. Examples include diatomic allotropes (L-E2-L; L = car- bene, E = B, Si, Ge, P, As, etc)1a of boron, silicon, germanium, phosphorus, arsenic, etc.2-4 Nevertheless, these interesting mole- cules, among numerous other main group species, sparked a debate about the most appropriate way to describe bonding in these com- Figure 1. Recently isolated neutral (A) and radical cationic (B) 5,6 pounds. In particular, the arguments have been focused on phosphorus mononitrides, and general structure for carbones (C). whether the carbene moieties form typical covalent bonds or the Dipp = 2,6-diisopropylphenyl. use of dative bond analogy is also valid. The latest evidence showed that the L-E bonds for L-B2-L are quite strong suggesting a sub- stantial covalent character.6 However, Frenking argued that dative The overall synthesis of the target dication is summarized in bonds could be also very strong by the combination of -donation Scheme 1.
    [Show full text]
  • Directed Gas Phase Formation of Silicon Dioxide and Implications for the Formation of Interstellar Silicates
    ARTICLE DOI: 10.1038/s41467-018-03172-5 OPEN Directed gas phase formation of silicon dioxide and implications for the formation of interstellar silicates Tao Yang 1,2, Aaron M. Thomas1, Beni B. Dangi1,3, Ralf I. Kaiser 1, Alexander M. Mebel 4 & Tom J. Millar 5 1234567890():,; Interstellar silicates play a key role in star formation and in the origin of solar systems, but their synthetic routes have remained largely elusive so far. Here we demonstrate in a combined crossed molecular beam and computational study that silicon dioxide (SiO2) along with silicon monoxide (SiO) can be synthesized via the reaction of the silylidyne radical (SiH) with molecular oxygen (O2) under single collision conditions. This mechanism may provide a low-temperature path—in addition to high-temperature routes to silicon oxides in circum- stellar envelopes—possibly enabling the formation and growth of silicates in the interstellar medium necessary to offset the fast silicate destruction. 1 Department of Chemistry, University of Hawai’iatMānoa, Honolulu, HI 96822, USA. 2 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China. 3 Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA. 4 Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA. 5 Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, UK. Correspondence and requests for materials should be addressed to R.I.K. (email: [email protected]) or to A.M.M. (email: mebela@fiu.edu) or to T.J.M. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:774 | DOI: 10.1038/s41467-018-03172-5 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03172-5 — 28 + 28 + he origin of interstellar silicate grains nanoparticles ( SiO2 ), and 44 ( SiO ).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • H2CS) and Its Thiohydroxycarbene Isomer (HCSH
    A chemical dynamics study on the gas phase formation of thioformaldehyde (H2CS) and its thiohydroxycarbene isomer (HCSH) Srinivas Doddipatlaa, Chao Hea, Ralf I. Kaisera,1, Yuheng Luoa, Rui Suna,1, Galiya R. Galimovab, Alexander M. Mebelb,1, and Tom J. Millarc,1 aDepartment of Chemistry, University of Hawai’iatManoa, Honolulu, HI 96822; bDepartment of Chemistry and Biochemistry, Florida International University, Miami, FL 33199; and cSchool of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom Edited by Stephen J. Benkovic, The Pennsylvania State University, University Park, PA, and approved August 4, 2020 (received for review March 13, 2020) Complex organosulfur molecules are ubiquitous in interstellar molecular sulfur dioxide (SO2) (21) and sulfur (S8) (22). The second phase clouds, but their fundamental formation mechanisms have remained commences with the formation of the central protostars. Tempera- largely elusive. These processes are of critical importance in initiating a tures increase up to 300 K, and sublimation of the (sulfur-bearing) series of elementary chemical reactions, leading eventually to organo- molecules from the grains takes over (20). The subsequent gas-phase sulfur molecules—among them potential precursors to iron-sulfide chemistry exploits complex reaction networks of ion–molecule and grains and to astrobiologically important molecules, such as the amino neutral–neutral reactions (17) with models postulating that the very acid cysteine. Here, we reveal through laboratory experiments, first sulfur–carbon bonds are formed via reactions involving methyl electronic-structure theory, quasi-classical trajectory studies, and astro- radicals (CH3)andcarbene(CH2) with atomic sulfur (S) leading to chemical modeling that the organosulfur chemistry can be initiated in carbonyl monosulfide and thioformaldehyde, respectively (18).
    [Show full text]
  • Injection of Meteoric Phosphorus Into Planetary Atmospheres
    Planetary and Space Science 187 (2020) 104926 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Injection of meteoric phosphorus into planetary atmospheres Juan Diego Carrillo-Sanchez a, David L. Bones a, Kevin M. Douglas a, George J. Flynn b, Sue Wirick c, Bruce Fegley Jr. d, Tohru Araki e, Burkhard Kaulich e, John M.C. Plane a,* a School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK b State University of New York at Plattsburgh, Department of Physics, 101 Broad Street, Plattsburg, NY, 12901, USA c Focused Beam Enterprises, Westhampton, NY, 11977, USA d Planetary Chemistry Laboratory, Department of Earth & Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St Louis, MO, 63130, USA e Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK ARTICLE INFO ABSTRACT Keywords: This study explores the delivery of phosphorus to the upper atmospheres of Earth, Mars, and Venus via the Cosmic dust ablation of cosmic dust particles. Micron-size meteoritic particles were flash heated to temperatures as high as Planetary atmospheres 2900 K in a Meteor Ablation Simulator (MASI), and the ablation of PO and Ca recorded simultaneously by laser Ablation induced fluorescence. Apatite grains were also ablated as a reference. The speciation of P in anhydrous chondritic Phosphorus thermodynamics porous Interplanetary Dust Particles was made by K-edge X-ray absorption near edge structure (XANES) spec- Zodiacal cloud troscopy, demonstrating that P mainly occurs in phosphate-like domains. A thermodynamic model of P in a sil- icate melt was then developed for inclusion in the Leeds Chemical Ablation Model (CABMOD).
    [Show full text]
  • Ubiquitous Argonium, Arh+, in the Diffuse Interstellar Medium
    Ubiquitous Argonium, ArH+, in the Interstellar Medium P. Schilke, Holger S. P. Müller, C. Comito, Á. Sánchez-Monge, D. A. Neufeld, N. Indriolo, E. A. Bergin, D. C. Lis, M. Gerin, J. H. Black, M. G. Wolfire, J. C. Pearson, K. M. Menten, B. Winkel V.6, 13th International HITRAN Conference, CfA, Cambridge, MA, USA, June 23–25, 2014 What is Argonium? ArH+, 1Σ+, isoelectronic to HCl + + Formation: Ar + H2 → ArH + H + + Destruction (e.g.): ArH + H2 → Ar + H3 Isotopic ratio: 36Ar : 38Ar : 40Ar terrestrial: 84.2 : 15.8 : 25018.8 (from decay of 40K) solar/ISM: ~84.6 : ~15.4 : 0.025 36ArH+ toward Crab Nebula SNR: J = 1 – 0 & 2 – 1 in emission (w. OH+ N = 1 – 0); SPIRE/Herschel M. J. Barlow et al., Science 342 (2013) 1343 On the Spectroscopy of ArH+ 40ArH+; rotational spectroscopy: K. B. Laughlin et al., PRL 58 (1987) 996: J" = 0 J. M. Brown et al., JMSp 128 (1988) 587: J" = 1 – 6 D. J. Liu et al., JCP 87 (1987) 2442: J" = 20 – 24; v ≤ 4 (MIR) 40ArD+; rotational spectroscopy: W. C. Bowman et al., JCP 79 (1983) 2093: J" = 0 (+ 36ArD+ & 38ArD+ H. Odashima et al., JMSp 195 (1999) 356: J" = 2 – 14 rovibrational spectroscopy: J. W. Brault & S. P. Davis, Phys. Sript. 25 (1982) 268: 40ArH+ J. W. C. Johns, JMSp 106 (1984) 124: 40ArH+, 40ArD+ R. R. Filueira & C. E. Blom, JMSp 127 (1988) 279: 36ArH+, 38ArH+ M. Cueto et al., ApJ 783 (2014) L5: 36ArH+, 38ArH+ ArH+ toward Sagittarius B2(M) – HIFI Line Survey Absorption toward Sgr B2(M) massive star-forming regions as background sources with approximate origins Sagittarius B2(M) Interstellar Chemistry of ArH+ I + + + + Ar + H2 → ArH + H exothermic (endo.
    [Show full text]