Cardinal and Ordinal Numbers Math 6300
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Algebra I Chapter 1. Basic Facts from Set Theory 1.1 Glossary of Abbreviations
Notes: c F.P. Greenleaf, 2000-2014 v43-s14sets.tex (version 1/1/2014) Algebra I Chapter 1. Basic Facts from Set Theory 1.1 Glossary of abbreviations. Below we list some standard math symbols that will be used as shorthand abbreviations throughout this course. means “for all; for every” • ∀ means “there exists (at least one)” • ∃ ! means “there exists exactly one” • ∃ s.t. means “such that” • = means “implies” • ⇒ means “if and only if” • ⇐⇒ x A means “the point x belongs to a set A;” x / A means “x is not in A” • ∈ ∈ N denotes the set of natural numbers (counting numbers) 1, 2, 3, • · · · Z denotes the set of all integers (positive, negative or zero) • Q denotes the set of rational numbers • R denotes the set of real numbers • C denotes the set of complex numbers • x A : P (x) If A is a set, this denotes the subset of elements x in A such that •statement { ∈ P (x)} is true. As examples of the last notation for specifying subsets: x R : x2 +1 2 = ( , 1] [1, ) { ∈ ≥ } −∞ − ∪ ∞ x R : x2 +1=0 = { ∈ } ∅ z C : z2 +1=0 = +i, i where i = √ 1 { ∈ } { − } − 1.2 Basic facts from set theory. Next we review the basic definitions and notations of set theory, which will be used throughout our discussions of algebra. denotes the empty set, the set with nothing in it • ∅ x A means that the point x belongs to a set A, or that x is an element of A. • ∈ A B means A is a subset of B – i.e. -
Even Ordinals and the Kunen Inconsistency∗
Even ordinals and the Kunen inconsistency∗ Gabriel Goldberg Evans Hall University Drive Berkeley, CA 94720 July 23, 2021 Abstract This paper contributes to the theory of large cardinals beyond the Kunen inconsistency, or choiceless large cardinal axioms, in the context where the Axiom of Choice is not assumed. The first part of the paper investigates a periodicity phenomenon: assuming choiceless large cardinal axioms, the properties of the cumulative hierarchy turn out to alternate between even and odd ranks. The second part of the paper explores the structure of ultrafilters under choiceless large cardinal axioms, exploiting the fact that these axioms imply a weak form of the author's Ultrapower Axiom [1]. The third and final part of the paper examines the consistency strength of choiceless large cardinals, including a proof that assuming DC, the existence of an elementary embedding j : Vλ+3 ! Vλ+3 implies the consistency of ZFC + I0. embedding j : Vλ+3 ! Vλ+3 implies that every subset of Vλ+1 has a sharp. We show that the existence of an elementary embedding from Vλ+2 to Vλ+2 is equiconsistent with the existence of an elementary embedding from L(Vλ+2) to L(Vλ+2) with critical point below λ. We show that assuming DC, the existence of an elementary embedding j : Vλ+3 ! Vλ+3 implies the consistency of ZFC + I0. By a recent result of Schlutzenberg [2], an elementary embedding from Vλ+2 to Vλ+2 does not suffice. 1 Introduction Assuming the Axiom of Choice, the large cardinal hierarchy comes to an abrupt halt in the vicinity of an !-huge cardinal. -
MATH 361 Homework 9
MATH 361 Homework 9 Royden 3.3.9 First, we show that for any subset E of the real numbers, Ec + y = (E + y)c (translating the complement is equivalent to the complement of the translated set). Without loss of generality, assume E can be written as c an open interval (e1; e2), so that E + y is represented by the set fxjx 2 (−∞; e1 + y) [ (e2 + y; +1)g. This c is equal to the set fxjx2 = (e1 + y; e2 + y)g, which is equivalent to the set (E + y) . Second, Let B = A − y. From Homework 8, we know that outer measure is invariant under translations. Using this along with the fact that E is measurable: m∗(A) = m∗(B) = m∗(B \ E) + m∗(B \ Ec) = m∗((B \ E) + y) + m∗((B \ Ec) + y) = m∗(((A − y) \ E) + y) + m∗(((A − y) \ Ec) + y) = m∗(A \ (E + y)) + m∗(A \ (Ec + y)) = m∗(A \ (E + y)) + m∗(A \ (E + y)c) The last line follows from Ec + y = (E + y)c. Royden 3.3.10 First, since E1;E2 2 M and M is a σ-algebra, E1 [ E2;E1 \ E2 2 M. By the measurability of E1 and E2: ∗ ∗ ∗ c m (E1) = m (E1 \ E2) + m (E1 \ E2) ∗ ∗ ∗ c m (E2) = m (E2 \ E1) + m (E2 \ E1) ∗ ∗ ∗ ∗ c ∗ c m (E1) + m (E2) = 2m (E1 \ E2) + m (E1 \ E2) + m (E1 \ E2) ∗ ∗ ∗ c ∗ c = m (E1 \ E2) + [m (E1 \ E2) + m (E1 \ E2) + m (E1 \ E2)] c c Second, E1 \ E2, E1 \ E2, and E1 \ E2 are disjoint sets whose union is equal to E1 [ E2. -
The Iterative Conception of Set
The Iterative Conception of Set Thomas Forster Centre for Mathematical Sciences Wilberforce Road Cambridge, CB3 0WB, U.K. September 4, 2009 Contents 1 The Cumulative Hierarchy 2 2 The Two-Constructor case 5 2.1 Set Equality in the Two-Constructor Case . 6 3 More Wands 9 3.1 Second-order categoricity .................... 9 3.2 Equality . 10 3.3 Restricted quantifiers . 10 3.4 Forcing . 11 4 Objections 11 4.1 Sets Constituted by their Members . 12 4.2 The End of Time . 12 4.2.1 What is it an argument against? . 13 4.3 How Many Wands? . 13 5 Church-Oswald models 14 5.1 The Significance of the Church-Oswald Interpretation . 16 5.2 Forti-Honsell Antifoundation . 16 6 Envoi: Why considering the two-wand construction might be helpful 17 1 Abstract The two expressions “The cumulative hierarchy” and “The iterative con- ception of sets” are usually taken to be synonymous. However the second is more general than the first, in that there are recursive procedures that generate some illfounded sets in addition to wellfounded sets. The inter- esting question is whether or not the arguments in favour of the more restrictive version—the cumulative hierarchy—were all along arguments for the more general version. The phrase “The iterative conception of sets” conjures up a picture of a particular set-theoretic universe—the cumulative hierarchy—and the constant conjunction of phrase-with-picture is so reliable that people tend to think that the cumulative hierarchy is all there is to the iterative conception of sets: if you conceive sets iteratively then the result is the cumulative hierarchy. -
Handout from Today's Lecture
MA532 Lecture Timothy Kohl Boston University April 23, 2020 Timothy Kohl (Boston University) MA532 Lecture April 23, 2020 1 / 26 Cardinal Arithmetic Recall that one may define addition and multiplication of ordinals α = ot(A, A) β = ot(B, B ) α + β and α · β by constructing order relations on A ∪ B and B × A. For cardinal numbers the foundations are somewhat similar, but also somewhat simpler since one need not refer to orderings. Definition For sets A, B where |A| = α and |B| = β then α + β = |(A × {0}) ∪ (B × {1})|. Timothy Kohl (Boston University) MA532 Lecture April 23, 2020 2 / 26 The curious part of the definition is the two sets A × {0} and B × {1} which can be viewed as subsets of the direct product (A ∪ B) × {0, 1} which basically allows us to add |A| and |B|, in particular since, in the usual formula for the size of the union of two sets |A ∪ B| = |A| + |B| − |A ∩ B| which in this case is bypassed since, by construction, (A × {0}) ∩ (B × {1})= ∅ regardless of the nature of A ∩ B. Timothy Kohl (Boston University) MA532 Lecture April 23, 2020 3 / 26 Definition For sets A, B where |A| = α and |B| = β then α · β = |A × B|. One immediate consequence of these definitions is the following. Proposition If m, n are finite ordinals, then as cardinals one has |m| + |n| = |m + n|, (where the addition on the right is ordinal addition in ω) meaning that ordinal addition and cardinal addition agree. Proof. The simplest proof of this is to define a bijection f : (m × {0}) ∪ (n × {1}) → m + n by f (hr, 0i)= r for r ∈ m and f (hs, 1i)= m + s for s ∈ n. -
Solutions to Homework 2 Math 55B
Solutions to Homework 2 Math 55b 1. Give an example of a subset A ⊂ R such that, by repeatedly taking closures and complements. Take A := (−5; −4)−Q [[−4; −3][f2g[[−1; 0][(1; 2)[(2; 3)[ (4; 5)\Q . (The number of intervals in this sets is unnecessarily large, but, as Kevin suggested, taking a set that is complement-symmetric about 0 cuts down the verification in half. Note that this set is the union of f0g[(1; 2)[(2; 3)[ ([4; 5] \ Q) and the complement of the reflection of this set about the the origin). Because of this symmetry, we only need to verify that the closure- complement-closure sequence of the set f0g [ (1; 2) [ (2; 3) [ (4; 5) \ Q consists of seven distinct sets. Here are the (first) seven members of this sequence; from the eighth member the sets start repeating period- ically: f0g [ (1; 2) [ (2; 3) [ (4; 5) \ Q ; f0g [ [1; 3] [ [4; 5]; (−∞; 0) [ (0; 1) [ (3; 4) [ (5; 1); (−∞; 1] [ [3; 4] [ [5; 1); (1; 3) [ (4; 5); [1; 3] [ [4; 5]; (−∞; 1) [ (3; 4) [ (5; 1). Thus, by symmetry, both the closure- complement-closure and complement-closure-complement sequences of A consist of seven distinct sets, and hence there is a total of 14 different sets obtained from A by taking closures and complements. Remark. That 14 is the maximal possible number of sets obtainable for any metric space is the Kuratowski complement-closure problem. This is proved by noting that, denoting respectively the closure and com- plement operators by a and b and by e the identity operator, the relations a2 = a; b2 = e, and aba = abababa take place, and then one can simply list all 14 elements of the monoid ha; b j a2 = a; b2 = e; aba = abababai. -
Arxiv:1901.02074V1 [Math.LO] 4 Jan 2019 a Xoskona Lrecrias Ih Eal Ogv Entv a Definitive a Give T to of Able Basis Be the Might Cardinals” [17]
GENERIC LARGE CARDINALS AS AXIOMS MONROE ESKEW Abstract. We argue against Foreman’s proposal to settle the continuum hy- pothesis and other classical independent questions via the adoption of generic large cardinal axioms. Shortly after proving that the set of all real numbers has a strictly larger car- dinality than the set of integers, Cantor conjectured his Continuum Hypothesis (CH): that there is no set of a size strictly in between that of the integers and the real numbers [1]. A resolution of CH was the first problem on Hilbert’s famous list presented in 1900 [19]. G¨odel made a major advance by constructing a model of the Zermelo-Frankel (ZF) axioms for set theory in which the Axiom of Choice and CH both hold, starting from a model of ZF. This showed that the axiom system ZF, if consistent on its own, could not disprove Choice, and that ZF with Choice (ZFC), a system which suffices to formalize the methods of ordinary mathematics, could not disprove CH [16]. It remained unknown at the time whether models of ZFC could be found in which CH was false, but G¨odel began to suspect that this was possible, and hence that CH could not be settled on the basis of the normal methods of mathematics. G¨odel remained hopeful, however, that new mathemati- cal axioms known as “large cardinals” might be able to give a definitive answer on CH [17]. The independence of CH from ZFC was finally solved by Cohen’s invention of the method of forcing [2]. Cohen’s method showed that ZFC could not prove CH either, and in fact could not put any kind of bound on the possible number of cardinals between the sizes of the integers and the reals. -
Axiomatic Set Teory P.D.Welch
Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L. -
Singular Cardinals: from Hausdorff's Gaps to Shelah's Pcf Theory
SINGULAR CARDINALS: FROM HAUSDORFF’S GAPS TO SHELAH’S PCF THEORY Menachem Kojman 1 PREFACE The mathematical subject of singular cardinals is young and many of the math- ematicians who made important contributions to it are still active. This makes writing a history of singular cardinals a somewhat riskier mission than writing the history of, say, Babylonian arithmetic. Yet exactly the discussions with some of the people who created the 20th century history of singular cardinals made the writing of this article fascinating. I am indebted to Moti Gitik, Ronald Jensen, Istv´an Juh´asz, Menachem Magidor and Saharon Shelah for the time and effort they spent on helping me understand the development of the subject and for many illuminations they provided. A lot of what I thought about the history of singular cardinals had to change as a result of these discussions. Special thanks are due to Istv´an Juh´asz, for his patient reading for me from the Russian text of Alexandrov and Urysohn’s Memoirs, to Salma Kuhlmann, who directed me to the definition of singular cardinals in Hausdorff’s writing, and to Stefan Geschke, who helped me with the German texts I needed to read and sometimes translate. I am also indebted to the Hausdorff project in Bonn, for publishing a beautiful annotated volume of Hausdorff’s monumental Grundz¨uge der Mengenlehre and for Springer Verlag, for rushing to me a free copy of this book; many important details about the early history of the subject were drawn from this volume. The wonderful library and archive of the Institute Mittag-Leffler are a treasure for anyone interested in mathematics at the turn of the 20th century; a particularly pleasant duty for me is to thank the institute for hosting me during my visit in September of 2009, which allowed me to verify various details in the early research literature, as well as providing me the company of many set theorists and model theorists who are interested in the subject. -
Directed Sets and Cofinal Types by Stevo Todorcevic
transactions of the american mathematical society Volume 290, Number 2, August 1985 DIRECTED SETS AND COFINAL TYPES BY STEVO TODORCEVIC Abstract. We show that 1, w, ax, u x ux and ["iF" are the only cofinal types of directed sets of size S,, but that there exist many cofinal types of directed sets of size continuum. A partially ordered set D is directed if every two elements of D have an upper bound in D. In this note we consider some basic problems concerning directed sets which have their origin in the theory of Moore-Smith convergence in topology [12, 3, 19, 9]. One such problem is to determine "all essential kind of directed sets" needed for defining the closure operator in a given class of spaces [3, p. 47]. Concerning this problem, the following important notion was introduced by J. Tukey [19]. Two directed sets D and E are cofinally similar if there is a partially ordered set C in which both can be embedded as cofinal subsets. He showed that this is an equivalence relation and that D and E are cofinally similar iff there is a convergent map from D into E and also a convergent map from E into D. The equivalence classes of this relation are called cofinal types. This concept has been extensively studied since then by various authors [4, 13, 7, 8]. Already, from the first introduc- tion of this concept, it has been known that 1, w, ccx, w X cox and [w1]<" represent different cofinal types of directed sets of size < Kls but no more than five such types were known. -
Ineffability Within the Limits of Abstraction Alone
Ineffability within the Limits of Abstraction Alone Stewart Shapiro and Gabriel Uzquiano 1 Abstraction and iteration The purpose of this article is to assess the prospects for a Scottish neo-logicist foundation for a set theory. The gold standard would be a theory as rich and useful as the dominant one, ZFC, Zermelo-Fraenkel set theory with choice, perhaps aug- mented with large cardinal principles. Although the present paper is self-contained, we draw upon recent work in [32] in which we explore the power of a reasonably pure principle of reflection. To establish terminology, the Scottish neo-logicist program is to develop branches of mathematics using abstraction principles in the form: xα = xβ $ α ∼ β where the variables α and β range over items of a certain sort, x is an operator taking items of this sort to objects, and ∼ is an equivalence relation on this sort of item. The standard exemplar, of course, is Hume’s principle: #F = #G ≡ F ≈ G where, as usual, F ≈ G is an abbreviation of the second-order statement that there is a one-one correspondence from F onto G. Hume’s principle, is the main support for what is regarded as a success-story for the Scottish neo-logicist program, at least by its advocates. The search is on to develop more powerful mathematical theories on a similar basis. As witnessed by this volume and a significant portion of the contemporary liter- ature in the philosophy of mathematics, Scottish neo-logicism remains controver- sial, even for arithmetic. There are, for example, issues of Caesar and Bad Com- pany to deal with. -
Set Theory Without Choice: Not Everything on Cofinality Is Possible
Sh:497 Arch. Math. Logic (1997) 36: 81–125 c Springer-Verlag 1997 Set theory without choice: not everything on cofinality is possible Saharon Shelah1,2,? 1 Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel∗∗ 2 Department of Mathematics, Rutgers University, New Brunswick, NJ, USA Received May 6, 1993 / Revised December 11, 1995 Abstract. We prove in ZF+DC, e.g. that: if µ = H (µ) and µ>cf(µ) > 0 then µ+ is regular but non measurable. This is in| contrast| with the resultsℵ on measurability for µ = ω due to Apter and Magidor [ApMg]. ℵ Annotated content 0 Introduction [In addition to presenting the results and history, we gave some basic definitions and notation.] 1 Exact upper bound (A∗) [We define some variants of least upper bound (lub, eub)in( Ord,<D) for D a filter on A∗. We consider <D -increasing sequence indexed by ordinals δ or indexed by sufficiently directed partial orders I , of members of (A∗)Ord or of members of (A∗)Ord/D (and cases in the middle). We give sufficient conditions for existence involving large cofinality (of δ or I ) and some amount of choice. Mostly we look at what the ZFC proof gives without choice. Note in particular 1.8, which assumes only DC (ZF is not mentioned of course), the filter is 1- complete and cofinality of δ large and we find an eub only after extendingℵ the filter.] 2 hpp [We look at various ways to measure the size of the set f (a)/D, like a A ∈ ∗ supremum length of <D -increasing sequence in f (a) (calledQ ehppD ), or a A ∈ ∗ Q ? Research supported by “The Israel Science Foundation” administered by The Israel Academy of Sciences and Humanities.