The CLRX.1&Sol;NOD24 (NLRP2P) Pseudogene Codes a Functional
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mouse Pop1 Conditional Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Pop1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Pop1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Pop1 gene (NCBI Reference Sequence: NM_152894 ; Ensembl: ENSMUSG00000022325 ) is located on Mouse chromosome 15. 17 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 17 (Transcript: ENSMUST00000052290). Exon 4~5 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Pop1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-365B13 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 4 starts from about 9.92% of the coding region. The knockout of Exon 4~5 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 2480 bp, and the size of intron 5 for 3'-loxP site insertion: 1452 bp. The size of effective cKO region: ~2209 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 4 5 6 7 17 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Pop1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. -
The Genomic Structure and Expression of MJD, the Machado-Joseph Disease Gene
J Hum Genet (2001) 46:413–422 © Jpn Soc Hum Genet and Springer-Verlag 2001 ORIGINAL ARTICLE Yaeko Ichikawa · Jun Goto · Masahira Hattori Atsushi Toyoda · Kazuo Ishii · Seon-Yong Jeong Hideji Hashida · Naoki Masuda · Katsuhisa Ogata Fumio Kasai · Momoki Hirai · Patrícia Maciel Guy A. Rouleau · Yoshiyuki Sakaki · Ichiro Kanazawa The genomic structure and expression of MJD, the Machado-Joseph disease gene Received: March 7, 2001 / Accepted: April 17, 2001 Abstract Machado-Joseph disease (MJD) is an autosomal relative to the MJD gene in B445M7 indicate that there are dominant neurodegenerative disorder that is clinically char- three alternative splicing sites and eight polyadenylation acterized by cerebellar ataxia and various associated symp- signals in MJD that are used to generate the differently toms. The disease is caused by an unstable expansion of the sized transcripts. CAG repeat in the MJD gene. This gene is mapped to chromosome 14q32.1. To determine its genomic structure, Key words Machado-Joseph disease (MJD) · 14q32.1 · we constructed a contig composed of six cosmid clones and CAG repeat · Genome structure · Alternative splicing · eight bacterial artificial chromosome (BAC) clones. It spans mRNA expression approximately 300kb and includes MJD. We also deter- mined the complete sequence (175,330bp) of B445M7, a human BAC clone that contains MJD. The MJD gene was found to span 48,240bp and to contain 11 exons. Northern Introduction blot analysis showed that MJD mRNA is ubiquitously expressed in human tissues, and in at least four different Machado-Joseph disease (MJD) is an autosomal dominant sizes; namely, 1.4, 1.8, 4.5, and 7.5kb. -
Complete Article
The EMBO Journal Vol. I No. 12 pp. 1539-1544, 1982 Long terminal repeat-like elements flank a human immunoglobulin epsilon pseudogene that lacks introns Shintaro Ueda', Sumiko Nakai, Yasuyoshi Nishida, lack the entire IVS have been found in the gene families of the Hiroshi Hisajima, and Tasuku Honjo* mouse a-globin (Nishioka et al., 1980; Vanin et al., 1980), the lambda chain (Hollis et al., 1982), Department of Genetics, Osaka University Medical School, Osaka 530, human immunoglobulin Japan and the human ,B-tubulin (Wilde et al., 1982a, 1982b). The mouse a-globin processed gene is flanked by long terminal Communicated by K.Rajewsky Received on 30 September 1982 repeats (LTRs) of retrovirus-like intracisternal A particles on both sides, although their orientation is opposite to each There are at least three immunoglobulin epsilon genes (C,1, other (Lueders et al., 1982). The human processed genes CE2, and CE) in the human genome. The nucleotide sequences described above have poly(A)-like tails -20 bases 3' to the of the expressed epsilon gene (CE,) and one (CE) of the two putative poly(A) addition signal and are flanked by direct epsilon pseudogenes were compared. The results show that repeats of several bases on both sides (Hollis et al., 1982; the CE3 gene lacks the three intervening sequences entirely and Wilde et al., 1982a, 1982b). Such direct repeats, which were has a 31-base A-rich sequence 16 bases 3' to the putative also found in human small nuclear RNA pseudogenes poly(A) addition signal, indicating that the CE3 gene is a pro- (Arsdell et al., 1981), might have been formed by repair of cessed gene. -
1 Retrotransposons and Pseudogenes Regulate Mrnas and Lncrnas Via the Pirna Pathway 1 in the Germline 2 3 Toshiaki Watanabe*, E
Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway 2 in the germline 3 4 Toshiaki Watanabe*, Ee-chun Cheng, Mei Zhong, and Haifan Lin* 5 Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, 6 Connecticut 06519, USA 7 8 Running Title: Pachytene piRNAs regulate mRNAs and lncRNAs 9 10 Key Words: retrotransposon, pseudogene, lncRNA, piRNA, Piwi, spermatogenesis 11 12 *Correspondence: [email protected]; [email protected] 13 1 Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 14 ABSTRACT 15 The eukaryotic genome has vast intergenic regions containing transposons, pseudogenes, and other 16 repetitive sequences. They produce numerous long non-coding RNAs (lncRNAs) and PIWI-interacting 17 RNAs (piRNAs), yet the functions of the vast intergenic regions remain largely unknown. Mammalian 18 piRNAs are abundantly expressed in late spermatocytes and round spermatids, coinciding with the 19 widespread expression of lncRNAs in these cells. Here, we show that piRNAs derived from transposons 20 and pseudogenes mediate the degradation of a large number of mRNAs and lncRNAs in mouse late 21 spermatocytes. In particular, they have a large impact on the lncRNA transcriptome, as a quarter of 22 lncRNAs expressed in late spermatocytes are up-regulated in mice deficient in the piRNA pathway. 23 Furthermore, our genomic and in vivo functional analyses reveal that retrotransposon sequences in the 24 3´UTR of mRNAs are targeted by piRNAs for degradation. -
Rpp2, an Essential Protein Subunit of Nuclear Rnase P, Is Required for Processing of Precursor Trnas and 35S Precursor Rrna in Saccharomyces Cerevisiae
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6716–6721, June 1998 Biochemistry Rpp2, an essential protein subunit of nuclear RNase P, is required for processing of precursor tRNAs and 35S precursor rRNA in Saccharomyces cerevisiae VIKTOR STOLC*, ALEXANDER KATZ†, AND SIDNEY ALTMAN†‡ †Department of Biology, Yale University, New Haven, CT 06520; and *Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510 Contributed by Sidney Altman, March 31, 1998 ABSTRACT RPP2, an essential gene that encodes a 15.8- has been suggested that RNase P is an ancestor of RNase kDa protein subunit of nuclear RNase P, has been identified MRP, because RNase MRP has been found only in eukaryotes in the genome of Saccharomyces cerevisiae. Rpp2 was detected (20). Yeast RNase MRP functions in processing of precursor by sequence similarity with a human protein, Rpp20, which rRNAs at the A3 site in the internal transcribed sequence of copurifies with human RNase P. Epitope-tagged Rpp2 can be the 35S precursor rRNA (21) and also cleaves RNA primers found in association with both RNase P and RNase mitochon- for mitochondrial DNA replication (22, 23). Although RNase drial RNA processing in immunoprecipitates from crude MRP does not cleave ptRNAs in vitro, its role in rRNA extracts of cells. Depletion of Rpp2 protein in vivo causes processing is affected by proteins that associate with RNase P accumulation of precursor tRNAs with unprocessed introns in vivo (11–14). RNase P functions in the biosynthesis of and 5* and 3* termini, and leads to defects in the processing tRNAs (8) and appears to have a role in rRNA processing in of the 35S precursor rRNA. -
Long-Read Cdna Sequencing Identifies Functional Pseudogenes in the Human Transcriptome Robin-Lee Troskie1, Yohaann Jafrani1, Tim R
Troskie et al. Genome Biology (2021) 22:146 https://doi.org/10.1186/s13059-021-02369-0 SHORT REPORT Open Access Long-read cDNA sequencing identifies functional pseudogenes in the human transcriptome Robin-Lee Troskie1, Yohaann Jafrani1, Tim R. Mercer2, Adam D. Ewing1*, Geoffrey J. Faulkner1,3* and Seth W. Cheetham1* * Correspondence: adam.ewing@ mater.uq.edu.au; faulknergj@gmail. Abstract com; [email protected]. au Pseudogenes are gene copies presumed to mainly be functionless relics of evolution 1Mater Research Institute-University due to acquired deleterious mutations or transcriptional silencing. Using deep full- of Queensland, TRI Building, QLD length PacBio cDNA sequencing of normal human tissues and cancer cell lines, we 4102 Woolloongabba, Australia Full list of author information is identify here hundreds of novel transcribed pseudogenes expressed in tissue-specific available at the end of the article patterns. Some pseudogene transcripts have intact open reading frames and are translated in cultured cells, representing unannotated protein-coding genes. To assess the biological impact of noncoding pseudogenes, we CRISPR-Cas9 delete the nucleus-enriched pseudogene PDCL3P4 and observe hundreds of perturbed genes. This study highlights pseudogenes as a complex and dynamic component of the human transcriptional landscape. Keywords: Pseudogene, PacBio, Long-read, lncRNA, CRISPR Background Pseudogenes are gene copies which are thought to be defective due to frame- disrupting mutations or transcriptional silencing [1, 2]. Most human pseudogenes (72%) are derived from retrotransposition of processed mRNAs, mediated by proteins encoded by the LINE-1 retrotransposon [3, 4]. Due to the loss of parental cis-regula- tory elements, processed pseudogenes were initially presumed to be transcriptionally silent [1] and were excluded from genome-wide functional screens and most transcrip- tome analyses [2]. -
Towards Reconstitution of Human Rnase P Protein Subunits with Human and Bacterial Rnase P Rnas
Towards reconstitution of human RNase P protein subunits with human and bacterial RNase P RNAs Research Thesis Presented in partial fulfillment of the requirements for graduation with research distinction in Biochemistry in the undergraduate colleges of The Ohio State University by Chigozirim Ekeke The Ohio State University June 2011 Project Advisor: Dr. Venkat Gopalan 1 DEDICATION Dedicated to the Ekeke family for their support, love, and blessings throughout my undergraduate career. 2 ACKNOWLEDGEMENTS I would like to thank Dr. Venkat Gopalan for his mentorship, wisdom, and unselfishness in helping me throughout my undergraduate research studies. He has taught me how to be a better scientist and student. I consider his presence in my life a true blessing. I thank Dr. Lien Lai for her guidance and willingness to help me throughout my research experience. Her opinions, critiques, and invaluable wisdom have molded me into a better researcher as well. I also thank Dr. Caroline Breitenberger for serving on my thesis committee and support throughout my collegiate career. I am grateful to the wonderful colleagues that I worked with in the Gopalan laboratory: Dr. Wen-Yi Chen, Dr. I-Ming Cho, Dr. Anil Challa, Dr. Gireesha Mohannath, Sathiyanarayanan Manivannan, and Cecilia Go. I appreciate their assistance and insights in helping me throughout my research. Additionally, I would like to thank Stella Lai, Emily Wong, Derek Smith, and Andrew Merriman for their sincere friendship and advice throughout this project. I am grateful and humbled by the financial support provided to me by the NSF Research Experience for Undergraduates Supplement (2010), OSU College of Biological Sciences (2009, 2010), and the OSU Colleges of the Arts and Sciences (2010-2011). -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Identification of Genetic Factors Underpinning Phenotypic Heterogeneity in Huntington’S Disease and Other Neurodegenerative Disorders
Identification of genetic factors underpinning phenotypic heterogeneity in Huntington’s disease and other neurodegenerative disorders. By Dr Davina J Hensman Moss A thesis submitted to University College London for the degree of Doctor of Philosophy Department of Neurodegenerative Disease Institute of Neurology University College London (UCL) 2020 1 I, Davina Hensman Moss confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Collaborative work is also indicated in this thesis. Signature: Date: 2 Abstract Neurodegenerative diseases including Huntington’s disease (HD), the spinocerebellar ataxias and C9orf72 associated Amyotrophic Lateral Sclerosis / Frontotemporal dementia (ALS/FTD) do not present and progress in the same way in all patients. Instead there is phenotypic variability in age at onset, progression and symptoms. Understanding this variability is not only clinically valuable, but identification of the genetic factors underpinning this variability has the potential to highlight genes and pathways which may be amenable to therapeutic manipulation, hence help find drugs for these devastating and currently incurable diseases. Identification of genetic modifiers of neurodegenerative diseases is the overarching aim of this thesis. To identify genetic variants which modify disease progression it is first necessary to have a detailed characterization of the disease and its trajectory over time. In this thesis clinical data from the TRACK-HD studies, for which I collected data as a clinical fellow, was used to study disease progression over time in HD, and give subjects a progression score for subsequent analysis. In this thesis I show blood transcriptomic signatures of HD status and stage which parallel HD brain and overlap with Alzheimer’s disease brain. -
ARCIVES Genome Sequencing Technology: Improvement of the Electrophoretic Sequencing Process and Analysis of the Sequencing Tool Industry by Kazunori Maruyama Ph.D
Genome Sequencing Technology: Improvement of the Electrophoretic Sequencing Process and Analysis of the Sequencing Tool Industry by Kazunori Maruyama Ph.D. in Material Science, Mie University (2001) M.S. in Macromolecular Science, Osaka University (1993) Submitted to the Alfred P. Sloan School of Management and the Department of Chemical Engineering in Partial Fulfillment of the Requirements for the Degrees of Master of BusinessAdministration and Master of Science in Chemical Engineering In Conjunction with the Leaders for Manufacturing Program at the MASSACHUSETTSINSUE Massachusetts Institute of Technology OF TECHNOLOY June 2005 JUN 01 2005 02005 Massachusetts Institute of Technology. All rights reserved. LIBRARIES Signature of Author Alfred P. Sloan School of Management Department of Chemical Engineering May 6, 2005 Certified by -- Roy E. Welsch Professor of Statistics and Management Science Thesis Advisor Certified by r Patrick S. Doyle Assistant-Professor of Chemical Engineering Thesis Advisor Accepted by · - Margaret Andrews Alfred P. Sloan School of Management Executive Director of Masters Program Accepted by - - Daniel Blankschtein Department of Chemical Engineering Graduate Committee Chairman .ARCIVES Genome Sequencing Technology: Improvement of the Electrophoretic Sequencing Process and Analysis of the Sequencing Tool Industry by Kazunori Maruyama Ph.D. in Material Science, Mie University (2001) M.S. in Macromolecular Science, Osaka University (1993) Submitted to the Alfred P. Sloan School of Management and the Department of Chemical Engineering in Partial Fulfillment of the Requirements for the Degrees of Master of Business Administration and Master of Science in Chemical Engineering ABSTRACT A primary bottleneck in DNA-sequencing operations is the capacity of the detection process. Although today's capillary electrophoresis DNA sequencers are faster, more sensitive, and more reliable than their precursors, high purchasing and running costs still make them a limiting factor in most laboratories like those of the Broad Institute. -
NF1) Pseudogenes on Chromosomes 2, 14 and 22
European Journal of Human Genetics (2000) 8, 209–214 © 2000 Macmillan Publishers Ltd All rights reserved 1018–4813/00 $15.00 y www.nature.com/ejhg ARTICLE Mechanism of spreading of the highly related neurofibromatosis type 1 (NF1) pseudogenes on chromosomes 2, 14 and 22 Mirjam Luijten1, YingPing Wang2, Blaine T Smith2, Andries Westerveld1, Luc J Smink3, Ian Dunham3, Bruce A Roe2 and Theo JM Hulsebos1 1Department of Human Genetics, Academic Medical Center, University of Amsterdam, The Netherlands; 2Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA; 3Sanger Centre, Wellcome Trust Genome Campus, Hinxton Hall, Cambridge, UK Neurofibromatosis type 1 (NF1) is a frequent hereditary disorder that involves tissues derived from the embryonic neural crest. Besides the functional gene on chromosome arm 17q, NF1-related sequences (pseudogenes) are present on a number of chromosomes including 2, 12, 14, 15, 18, 21, and 22. We elucidated the complete nucleotide sequence of the NF1 pseudogene on chromosome 22. Only the middle part of the functional gene but not exons 21–27a, encoding the functionally important GAP-related domain of the NF1 protein, is presented in this pseudogene. In addition to the two known NF1 pseudogenes on chromosome 14 we identified two novel variants. A phylogenetic tree was constructed, from which we concluded that the NF1 pseudogenes on chromosomes 2, 14, and 22 are closely related to each other. Clones containing one of these pseudogenes cross-hybridised with the other pseudogenes in this subset, but did not reveal any in situ hybridisation with the functional NF1 gene or with NF1 pseudogenes on other chromosomes. -
Chimp Olivia.Rev1
Olivia Knowles Page 1 Annotation of Chimp Chunk 2-7 Introduction: My partner, Michelle Miller, and I have annotated Chimp Chunk 2-7 in preparation for annotating a segment of the Drosophila mohavensis genome. We were given GENSCAN (tool that predicts the location of genes in a given sequence) output for our Chimp Chunk. In order to discover the true identity of the genes predicted by GENSCAN, we analyzed a series of sequence alignments using BLAST (Basic Local Alignment Search Tool), BLAT (BLAST – Like Alignment Tool) and ClustalW (a multiple sequence alignment program). Fig 1: GENSCANW Output for Chimp Chunk 2-7 Fig 2: Initial GENSCAN Gene Map Olivia Knowles Page 2 Results: Predicted gene Number of exons Type of feature and related Location in Chimp (bp) number predicted function Pseudogene: RNA binding 1 6288-8932 1 motif---X-linked 3 estimated by GENSCAN, but Gene ortholog: spermatogenic 2 10182-36147 in reality 2 leucine zipper 1 gene exons. Explained later 1 estimated by Pseudogene: beta-actin. GENSCAN, but Structural support for the cell 3 36292-37603 in reality 2 and key player in muscular exons. contraction Explained later Pseudogene: keratin18. Keratin is a high sulfur matrix 4 40034-77992 5 protein used in feathers scales, hair, nails, etc. Table 1: Genes Predicted by GENSCAN Summary of Predicted Gene 1 and 2: My partner, Michelle Miller, analyzed the first two predicted genes. She found that predicted gene 1 is a pseudogene of the RNA binding motif, X-linked 2 gene. Evidence for this was gathered from BLASTp, BLAT to both humans and mice, and ESTs in the region.