Nitrification: Hunting for Soil Prokaryotes Microbiology

Total Page:16

File Type:pdf, Size:1020Kb

Nitrification: Hunting for Soil Prokaryotes Microbiology Nitrification: hunting for soil prokaryotes Inês Graça Gonçalves dos Santos Thesis to obtain the Master of Science Degree in Microbiology Supervisors: Professor Rogério Paulo de Andrade Tenreiro Professor Rodrigo da Silva Costa Examination Committee Chairperson: Professor Jorge Humberto Gomes Leitão Supervisor: Professor Rogério Paulo de Andrade Tenreiro Member of the Committee: Professor Ana Cristina Anjinho Madeira Viegas December, 2017 ACKNOWLEDGMENTS This project came out of a collaboration between the Microbiology and Biotechnology Lab (M&B- BioISI) and the Bioclub (cE3c) group. Without the support and dedication of the people involved it would certainly not have been possible. First, I would like to express my deepest gratitude to Professor Rogério Tenreiro, for the incredible opportunity. Thank you for taking me in and supporting me throughout this year, knowing when to push me and when to stand back. My gratitude extends beyond this thesis, for first instilling in me the curiosity which made me choose this path. To Professor Cristina Cruz, I am thankful for the knowledge and for the enthusiastic perspective she never fails to bring, even in the worst days. I would also like to thank the Bioclub group for their contribution to this project. To Professor Rodrigo Costa, for the suggestions and the availability throughout this process. To Professor Ana Tenreiro, for the support, the trust and the patience. Thank you for the unfailing kindness and the helping minions. I would also like to thank the people at M&B-BioISI for all their support. To Professor Lisete for the help and the advice. To Filipa Silva, for maintaining the lab working smoothly. To all the Bugworkers, I owe a tremendous thank you. I was lucky enough to become a part of a group of interested and dedicated people, always willing to help and share. In a line of work in which most days are frustrating and run too long, having people like this makes all the difference. To Ana, Catarina and João, for the company, the sushi in times of despair and the endless puns. To Sofia, for the precious help, the boundless energy and the never-ending questions. To André and Beatriz, for all their help, for the coffee runs and for putting up with my bad temper. To Pedro, for the incredible patience with which he deals with my questions. To Cláudia for taking us under her wing and teaching us all she could. To Jéssica and Miguel, for the cake and the silliness that made it all better. And to Ana Marta and Mariana, the other two vertices of this triangle, for somehow getting me through these years with at least some of my sanity left. Thank you for everything, from the late night impromptu singing to the early morning hugs. I’m so grateful that I got to share it all with you, I couldn’t have done it otherwise. I would also like to thank my friends for their unwavering patience and support, especially during these trying years. To Zé who never stops trying to make me laugh, and to Raquel, for being an inspiration and my safety net my entire life. Lastly, above all, to my family, who created a safe space filled with love and laughter for me to grow and learn, thank you for never allowing me to believe that I couldn’t be or do anything I wanted if I put my mind to it. II ABSTRACT Nitrification, the aerobic oxidation of ammonia to nitrate, is a key part of the N-cycle, bringing about serious ecological and economical concerns. A lot about this process remains unanswered, given the extreme difficulty in isolating ammonia-oxidizers and nitrite-oxidizers. Characterization of ten distinct Portuguese soils through physiochemical and biological features, revealed their different profiles, influencing diversity found. Initial diversity was assessed through an NGS- based microbial profiling analysis. Archaeal-nitrifiers, mainly represented by Nitrososphaera vienensis and “Ca. Nitrosotenuis”, composed almost 100% of detected Archaea; while bacterial-nitrifiers corresponded to a minor proportion of the reads, found only in three samples, represented by Nitrospira, Nitrosococcus and uncultured-AOB. Selective enrichment of diverse nitrifiers from these samples was achieved using different nitrogen + sources for AOB (to cope with NH4 tolerance and urease production), nitrite for nitrite-oxidizers and the + - - addition of antibiotics for archaeal ammonia-oxidizers. Monitoring of NH4 , NO2 and NO3 , complemented with the detection of functional genes, showed that the strategy worked best with lower concentrations of ammonium and in the presence of urea. Communities of AOB, NOB and Thaumarchaeota detected by a multi-probe FISH approach were found clustered together, densely aggregated in a matrix, forming consortia of nitrifiers. Culturable diversity was assessed through M13-PCR fingerprinting of the 477 isolates obtained from the enrichments for bacterial-nitrifiers. Identification of a few representative isolates revealed the presence of chemolithoautotrophs and N-cycle bacteria, though no nitrifiers have been identified so far. From these results, the role of microbial communities contributing to N-cycle and their distribution can be evaluated regarding soil type. Key-words: Nitrification; Soil microbial ecology, FISH, Microbial profiling; Genomic fingerprinting. IV RESUMO A nitrificação é um processo ecológico inserido no ciclo do azoto que corresponde à oxidação consecutiva de amónia a nitrito a nitrato, e ao qual podem ser atribuídas consequências ambientais e económicas severas. Muito é ainda desconhecido sobre este processo, devido à dificuldade em isolar nitrificantes. Dez solos portugueses foram caracterizados físico-química e biologicamente, correlacionando com a diversidade encontrada. Diversidade inicial foi estimada por perfil microbiano baseada em NGS. AOA encontram-se representadas principalmente por Nitrososphaera vienensis e “Ca. Nitrosotenuis”, correspondendo a quase 100% das arqueas detetadas enquanto que para bactérias, nitrificantes correspondem a uma minoria das reads, encontradas apenas em três amostras, representadas por Nitrospira, Nitrosococcus e oxidantes de amónia não-cultivadas. O enriquecimento seletivo de diversos nitrificantes foi feito usando diferentes fontes de azoto para + AOB (para lidar com tolerância a NH4 e produção de urease), nitrito para oxidantes de nitrito e antibiótico + - - para arqueas oxidantes de amónia. Doseamento de NH4 , NO2 e NO3 , juntamente com deteção de genes funcionais, revelou que a estratégia funcionou melhor na presença de ureia ou de menores concentrações + de NH4 . Comunidades de AOB, NOB e Thaumarchaeota detetadas por FISH com multi-sondas, foram encontradas agregadas numa matriz, formando consórcios de nitrificantes. A diversidade cultivável foi estimada por M13-PCR fingerprinting dos 477 isolados obtidos dos enriquecimentos para bactérias nitrificantes. Identificação de alguns isolados representativos permitiu detetar quimiolitotróficos e bactérias associadas ao ciclo do N, mas nenhum nitrificante foi identificado até agora. A partir destes resultados, o papel das comunidades microbianas a contribuir para o ciclo do azoto e a sua distribuição podem ser avaliadas por tipo de solo. Palavras-chave: Nitrificação; Ecologia Microbiana do Solo; FISH; Perfil microbiano; Fingerprinting genómico. V INDEX Acknowledgments ............................................................................................................................................ II Abstract .......................................................................................................................................................... IV Resumo ............................................................................................................................................................ V Figure Index ..................................................................................................................................................... X Tables Index ................................................................................................................................................... XII Abbreviation list ............................................................................................................................................ XIV Nitrification: from the organisms to the process .............................................................................................. 3 1. Nitrogen cycle: an overview ....................................................................................................................... 3 1.1 Nitrogen fixation ................................................................................................................................... 4 1.2 Mineralization and immobilization ....................................................................................................... 4 1.3 Nitrification ........................................................................................................................................... 5 1.4 Anaerobic ammonia oxidation .............................................................................................................. 5 1.5 Heterotrophic nitrification .................................................................................................................... 5 1.6 Denitrification ....................................................................................................................................... 6 2. Diversity and phylogeny of nitrifiers .........................................................................................................
Recommended publications
  • Representatives of the Prokaryotic (Chapter 12) and Archaeal (Chapter 13) Domains (Bergey's Manual of Determinative Bacteriology
    Representatives of the Prokaryotic (Chapter 12) and Archaeal (Chapter 13) Domains (Bergey's Manual of Determinative Bacteriology: Kingdom: Procaryotae (9th Edition) XIII Kingdoms p. 351-471 Sectn. Group of Bacteria Subdivisions(s) Brock Text Examples of Genera Gram Stain Morphology (plus distinguishing characteristics) Important Features Phototrophic bacteria Chromatiaceae 356 Purple sulfur bacteria Gram Anoxygenic photosynthesis Bacterial chl. a and b Purple nonsulfur bacteria; photoorganotrophic for reduced nucleotides; oxidize 12.2 Anaerobic (Chromatiun; Allochromatium) Negative Spheres, rods, spirals (S inside or outside)) H2S as electron donor for CO2 anaerobic photosynthesis for ATP Purple Sulfur Bacteria Anoxic - develop well in meromictic lakes - layers - fresh S inside the cells except for Ectothiorhodospira 354 Table 12.2 p.354 above sulfate layers - Figs. 12.4, 12.5 Major membrane structures Fig.12..3 -- light required. Purple Non-Sulfur Rhodospirillales 358 Rhodospirillum, Rhodobacter Gram Diverse morphology from rods (Rhodopseudomonas) to Anoxygenic photosynthesis Bacteria Table 12.3 p. 354, 606 Rhodopseudomonas Negative spirals Fig. 12.6 H2, H2S or S serve as H donor for reduction of CO2; 358 82-83 Photoheterotrophy - light as energy source but also directly use organics 12.3 Nitrifying Bacteria Nitrobacteraceae Nitrosomonas Gram Wide spread , Diverse (rods, cocci, spirals); Aerobic Obligate chemolithotroph (inorganic eN’ donors) 6 Chemolithotrophic (nitrifying bacteria) 361 Nitrosococcus oceani - Fig.12.7 negative ! ammonia [O] = nitrosofyers - (NH3 NO2) Note major membranes Fig. 12,7) 6 359 bacteria Inorganic electron (Table 12.4) Nitrobacterwinograskii - Fig.12.8 ! nitrite [O]; = nitrifyers ;(NO2 NO3) Soil charge changes from positive to negative donors Energy generation is small Difficult to see growth. - Use of silica gel.
    [Show full text]
  • Phylogenetic and Functional Characterization of Symbiotic Bacteria in Gutless Marine Worms (Annelida, Oligochaeta)
    Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta) Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Anna Blazejak Oktober 2005 Die vorliegende Arbeit wurde in der Zeit vom März 2002 bis Oktober 2005 am Max-Planck-Institut für Marine Mikrobiologie in Bremen angefertigt. 1. Gutachter: Prof. Dr. Rudolf Amann 2. Gutachter: Prof. Dr. Ulrich Fischer Tag des Promotionskolloquiums: 22. November 2005 Contents Summary ………………………………………………………………………………….… 1 Zusammenfassung ………………………………………………………………………… 2 Part I: Combined Presentation of Results A Introduction .…………………………………………………………………… 4 1 Definition and characteristics of symbiosis ...……………………………………. 4 2 Chemoautotrophic symbioses ..…………………………………………………… 6 2.1 Habitats of chemoautotrophic symbioses .………………………………… 8 2.2 Diversity of hosts harboring chemoautotrophic bacteria ………………… 10 2.2.1 Phylogenetic diversity of chemoautotrophic symbionts …………… 11 3 Symbiotic associations in gutless oligochaetes ………………………………… 13 3.1 Biogeography and phylogeny of the hosts …..……………………………. 13 3.2 The environment …..…………………………………………………………. 14 3.3 Structure of the symbiosis ………..…………………………………………. 16 3.4 Transmission of the symbionts ………..……………………………………. 18 3.5 Molecular characterization of the symbionts …..………………………….. 19 3.6 Function of the symbionts in gutless oligochaetes ..…..…………………. 20 4 Goals of this thesis …….…………………………………………………………..
    [Show full text]
  • Ammonia Removal: Biofilm Technologies for Rural and Urban Municipal Wastewater Treatment
    Ammonia removal: biofilm technologies for rural and urban municipal wastewater treatment Xin Tian A thesis submitted in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Environment Engineering Ottawa-Carleton Institute for Environmental Engineering Department of Civil Engineering Faculty of Engineering University of Ottawa © Xin Tian, Ottawa, Canada, 2020 I Abstract The new Canadian federal wastewater regulations, which restricts the release of ammonia from treated wastewaters, has resulted in upgrade initiatives at many water resource recovery facilities across the country to reduce the discharge of ammonia into our natural waters. The objective of this dissertation is therefore to investigate and optimize the performance of two attached growth technologies for rural and peri-urban/urban municipal ammonia removal. In particular, the first specific objective of this dissertation is to investigate the performance and microbial response of the BioCord technology as an upgrade system for the post-carbon removal nitrification of rural wastewaters. The second specific objective is to study the start-up of an attached growth anammox technology to enhance current knowledge pertaining to anammox biofilm attachment, growth and maturation. The results pertaining to the first specific objective of this research, a study of the design and optimization of the BioCord technology, demonstrates a recommended design rate for the post-carbon removal, nitrifying BioCord system of a surface area loading rate (SALR) of 1.6 + 2 + 2 NH4 -N/m ·d and up to 1.8 NH4 -N/m ·d with steady ammonia-nitrogen removal efficiencies greater than 90% and steady and low solids production rate up to 0.26 g TSS/d.
    [Show full text]
  • 2010.-Hungria-MLI.Pdf
    Mohammad Saghir Khan l Almas Zaidi Javed Musarrat Editors Microbes for Legume Improvement SpringerWienNewYork Editors Dr. Mohammad Saghir Khan Dr. Almas Zaidi Aligarh Muslim University Aligarh Muslim University Fac. Agricultural Sciences Fac. Agricultural Sciences Dept. Agricultural Microbiology Dept. Agricultural Microbiology 202002 Aligarh 202002 Aligarh India India [email protected] [email protected] Prof. Dr. Javed Musarrat Aligarh Muslim University Fac. Agricultural Sciences Dept. Agricultural Microbiology 202002 Aligarh India [email protected] This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. Product Liability: The publisher can give no guarantee for all the information contained in this book. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. # 2010 Springer-Verlag/Wien Printed in Germany SpringerWienNewYork is a part of Springer Science+Business Media springer.at Typesetting: SPI, Pondicherry, India Printed on acid-free and chlorine-free bleached paper SPIN: 12711161 With 23 (partly coloured) Figures Library of Congress Control Number: 2010931546 ISBN 978-3-211-99752-9 e-ISBN 978-3-211-99753-6 DOI 10.1007/978-3-211-99753-6 SpringerWienNewYork Preface The farmer folks around the world are facing acute problems in providing plants with required nutrients due to inadequate supply of raw materials, poor storage quality, indiscriminate uses and unaffordable hike in the costs of synthetic chemical fertilizers.
    [Show full text]
  • Program of Projects, 2016
    CALIFORNIA STATE SCIENCE FAIR PROGRAM OF PROJECTS MAY 23 – 24 2 016 Presenting Benefactor with support from The California Science Center aspires to stimulate curiosity and inspire science learning in everyone by creating fun, memorable experiences, because we value science as an indispensable tool for understanding our world, accessibility and inclusiveness, and enriching people’s lives. Welcome to the California Science Center, a dynamic destination where learners of all ages can explore the wonders of science through interactive exhibits, live demonstrations, innovative programs and awe-inspiring films. With 2.5 million guests in each of the past three years since the Space Shuttle Endeavour arrived, the Science Center is the most attended museum in California and ranks as number 8 of the 20 most visited museums in North America. While you are on site, please take a moment to explore some of the many exhibitions the Science Center offers. One-of-a-Kind Experiences Ecosystems, a major exhibition wing, explores the links between the living and physical worlds. It features an unprecedented blend of live plants and animals with hands-on science exhibits in 8 different environments. Creative World examines the environment humans build to meet their needs for structures, transportation and communications. From computer technology and digital imaging to solar cars and earthquake-resistant buildings, Creative World showcases the wonders and consequences of human innovation. World of Life probes the commonalties of the living world, from the single-celled bacterium to the 100 trillion-celled human being. Five additional galleries within this exhibit area feature the processes of creating, controlling, supplying, energizing and defending life.
    [Show full text]
  • Nitrification in Four Acidic Streams in Southern New Jersey
    / U.S. DEPARTMENT W COMMERCE National Technical Information Service PB-278 052 -//- Nitrification in Four Acidic Streams in Southern New Jersey Geological Survey, Trenton, N J Water Resources Div Jan 78 PB 278 052 NITRIFICATION IN FOUR ACIDIC STREAMS IN SOUTHERN NEW JERSEY U.S. GEOLOGICAL SURVEY Water-Resources Investigations 77-121 Prepared in cooperation with the State of New Jersey, Department of Environmental Protection REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161 BIBLIOGRAPHIC DATA 1. Report No. 3. Recipient's Accession No. SHEET USGS/WRD/WRI-78/016 4. Title and Subtitle 5. Report Date NITRIFICATION IN FOUR ACIDIC STREAMS Jan 1978 IN SOUTHERN NEW JERSEY 7. Authors) 8. Performing Organization Rtpt< James C. Schornick, Jr. and Nell M. Ram No- USGS/WRI-77-121 9. Performing Organization Name and Address 10. Projeet/Task/Work Unit No. U.S. Geological Survey (WRD) Rm. 420 Federal Building 11. Contract/Grant No. P.O. Box 1238 Trenton. N.J. 08607 12. Sponsoring Organization Name and Address 13. Type of Report & Period U.S. Geological Survey (WRD) Covered Rm. 420 Federal Building Final P.O. Box 1238 14. Trenton. N.J.. 08607_____ IS. Supplementary Notes Prepared in cooperation with the State of New Jersey, Department of Emiir onmenta 1 Protection_______ ______________________ 16. Abstract*, chemical and microbiological data from four characteristically acidic streams in southern New Jersey were used to evaluate seven factors related to the proclivity .o each stream to nitrify under the influence of secondary sewage effluent. pH, water temperature, and dissolved oxygen were used as indicators of stream conditions while neutralization of alkalinity, nitrogen species trends, BOD/NOD incubations, and nitri­ fying bacteria densities served as actual nitrification indicators.
    [Show full text]
  • N2o Exchanges by Three Agricultural Plots in Southern Belgium: Dynamics and Response to Meteorological Drivers and Agricultural Practices
    COMMUNAUTÉ FRANÇAISE DE BELGIQUE UNIVERSITÉ DE LIÈGE – GEMBLOUX AGRO-BIO TECH N2O EXCHANGES BY THREE AGRICULTURAL PLOTS IN SOUTHERN BELGIUM: DYNAMICS AND RESPONSE TO METEOROLOGICAL DRIVERS AND AGRICULTURAL PRACTICES Margaux LOGNOUL Dissertation originale présentée en vue de l’obtention du grade de docteur en sciences agronomiques et ingénierie biologique Promoteurs: Bernard HEINESCH & Bernard BODSON Année civile: 2020 Copyright: @ LOGNOUL Margaux, 2020 LOGNOUL Margaux (2020). N2O exchanges by three agricultural plots in Southern Belgium: dynamics and response to meteorological drivers and agricultural practices. PhD Thesis. Université de Liège - Gembloux Agro-Bio Tech, Belgium. 188 p. Abstract In Belgium, managed soils are responsible for more than 60 % of N2O emissions from agriculture. This thesis aimed at gaining insight on the influence of farming practices and meteorological conditions on N2O emissions and flux dynamics in crops and grassland in Belgium. We worked on three research focus points: (1) the suitability of eddy covariance to measure N2O fluxes, (2) the influence of farming practices on N2O exchanges and (3) the weight of N2O in the greenhouse gas budget of managed soils. Three measurement campaigns were setup in Southern Belgium. In 2015, two sets of automated dynamic closed chambers were used to monitor N2O exchanges in a maize crop with the aim of studying the long-term effect of contrasting tillage practices (conventional tillage vs. reduced tillage) in experimental plots. In 2016, at the Lonzée ICOS Station, N2O emissions were measured by eddy covariance in a sugar beet crop from fertilization to harvest. Finally, in 2018, at the Dorinne ICOS Station, we set up a paired-flux tower measurement campaign to assess the impact of pasture restoration vs.
    [Show full text]
  • Nitrogen Utilization in the Activated Sludge Process by Curtis Kenneth
    Nitrogen utilization in the activated sludge process by Curtis Kenneth Townsend A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Civil Engineering Montana State University © Copyright by Curtis Kenneth Townsend (1972) Abstract: Under man’s influence the process of eutrophication can be greatly accelerated by the concentration of nutrients in wastewater discharges. Biological growth can be controlled in a body of water by limiting the amount of any element required for growth of microorganisms. Nitrogen is required for the formation of amino and nucleic acids which are essential parts of living cells. This research involved construction of a pilot plant and a study of nitrogen removal by the activated sludge process with cell retention time as a variable. In the conventional activated sludge process nitrogen can be removed by wasting cells that contain nitrogen. One way to optimize nitrogen removal is by maximum cell wasting. However, this is limited by the necessity to keep the food to microorganism ratio within the proper range for adequate sludge settling. A second approach involves wasting cells with a maximum concentration of nitrogen. The results of this experiment indicate insignificant changes in the nitrogen concentration of the activated sludge with cell retention times from 1.72 to 10.15 days. The results of this research indicate that fixation may add significantly to the nitrogen content in the effluents from activated sludge treatment. In processes with no cell wasting (extended aeration), the nitrogen concentration of the effluent may exceed that of the influent.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • Dissertation
    DISSERTATION Titel der Dissertation The ecophysiology of nitrite-oxidizing bacteria in the genus Nitrospira: Novel aspects and unique features angestrebter akademischer Grad Doktor der Naturwissenschaften (Dr. rer. nat.) Verfasser: Frank Michael Maixner Matrikel-Nummer: 0409617 Dissertationsgebiet (lt. 444 Ökologie Studienblatt): Betreuer: Univ.-Prof. Dr. Michael Wagner Wien, am 13. April 2009 meiner Familie Contents Chapter I General Introduction and Outline 1 Chapter II Nitrite concentration influences the population structure of Nitrospira-like bacteria 27 Chapter III Environmental genomics reveals a functional chlorite dismutase in the nitrite-oxidizing bacterium ‘Candidatus Nitrospira defluvii’ 39 Chapter IV Nitrite oxidoreductase (Nxr) - the metabolic key enzyme of nitrite-oxidizing Nitrospira: Characterization of an unusual Nxr and its application as a novel functional and phylogenetic marker gene 67 Chapter V Summary/Zusammenfassung 123 Appendix 131 Supplement chapter I – paper 1 Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge 133 Supplement chapter I – paper 2 Physiological and phylogenetic characterization of a novel lithoautotrophic nitrite-oxidizing bacterium, ‘Candidatus Nitrospira bockiana’ 145 Supplement chapter I – figure 1 155 Supplement chapter I – table 1 161 List of publications 163 List of oral & poster presentations 165 Danksagung 169 Curriculum vitae 171 Abbreviations A adenine AmoA ammonia monooxygenase subunit A ARB Arbor (software package comprising various tools for sequence and phylogenetic analysis) AOA ammonia-oxidizing archaea AOB ammonia-oxidizing bacteria C cytosin CLD chlorite dismutase CLSM confocal laser scanning microscope; confocal laser scanning miocroscopy DNA deoxyribonucleic acid et al. et alii Fig. figure FISH fluorescence in situ hybridization G guanine Hao hydroxylamine oxidoreductase N nitrogen N.
    [Show full text]
  • Nitrification
    _____________________________________________________________________ Office of Water (4601M) Office of Ground Water and Drinking Water Distribution System Issue Paper Nitrification August 15, 2002 PREPARED FOR: U.S. Environmental Protection Agency Office of Ground Water and Drinking Water Standards and Risk Management Division 1200 Pennsylvania Ave., NW Washington DC 20004 Prepared by: AWWA With assistance from Economic and Engineering Services, Inc Background and Disclaimer The USEPA is revising the Total Coliform Rule (TCR) and is considering new possible distribution system requirements as part of these revisions. As part of this process, the USEPA is publishing a series of issue papers to present available information on topics relevant to possible TCR revisions. This paper was developed as part of that effort. The objectives of the issue papers are to review the available data, information and research regarding the potential public health risks associated with the distribution system issues, and where relevant identify areas in which additional research may be warranted. The issue papers will serve as background material for EPA, expert and stakeholder discussions. The papers only present available information and do not represent Agency policy. Some of the papers were prepared by parties outside of EPA; EPA does not endorse those papers, but is providing them for information and review. Additional Information The paper is available at the TCR web site at: http://www.epa.gov/safewater/disinfection/tcr/regulation_revisions.html Questions or comments regarding this paper may be directed to [email protected]. Nitrification 1.0 Introduction The goal of this document is to review existing literature, research and information on the potential public health implications associated with Nitrification.
    [Show full text]
  • AND NANO-SILVER TOXICITY to SOIL NITRIFICATION PROCESS Abdurrahman Masrahi Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 12-2013 MACROSCOPIC INVESTIGATION OF IONIC- AND NANO-SILVER TOXICITY TO SOIL NITRIFICATION PROCESS Abdurrahman Masrahi Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Environmental Sciences Commons Recommended Citation Masrahi, Abdurrahman, "MACROSCOPIC INVESTIGATION OF IONIC- AND NANO-SILVER TOXICITY TO SOIL NITRIFICATION PROCESS" (2013). All Theses. 1800. https://tigerprints.clemson.edu/all_theses/1800 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MACROSCOPIC INVESTIGATION OF IONIC- AND NANO-SILVER TOXICITY TO SOIL NITRIFICATION PROCESS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Plant and Environmental Sciences by Abdurrahman Sulaiman Masrahi December 2013 Accepted by: Dr. Yuji Arai, Committee Chair Dr. Horace Skipper Dr. Julia Kerrigan i ABSTRACT The worldwide production of engineered nanoparticles (ENPs) has grown rapidly in our era because of the popular applications in industrial and consumer markets. Especially silver (Ag) NP is one of mostly common ENPs in our consumer products due to its unique antimicrobial property. However, release of AgNPs into environment through wastewater treatment plants poses a question that what impact AgNPs have on microbially mediated processes in environment (e.g., nutrient and trace element cycles). In the last decades, numerous toxicological studies of AgNPs on bacteria have been conducted in pure culture systems, and several different antimicrobial mechanisms of AgNPs have been proposed.
    [Show full text]