Enzyme Related Therapies

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Drug and Biologic Coverage Policy Effective Date ........................................... 8/1/2021 Next Review Date… ..................................... 8/1/2022 Coverage Policy Number .................................. 1319 Enzyme Related Therapies Table of Contents Related Coverage Resources Coverage Policy ................................................... 1 Pharmacogenetic Testing FDA Approved Indications ................................... 4 Recommended Dosing ........................................ 5 General Background ............................................ 9 Coding/Billing Information .................................. 15 References ........................................................ 15 INSTRUCTIONS FOR USE The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer’s benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations. Coverage Policy Enzyme related therapies include the following products: • agalsidase beta (Fabrazyme®) • alglucosidase alfa (Lumizyme®) • asfotase alfa (Strensiq®) • elapegademase-lvlr (Revcovi™) • eliglustat (Cerdelga®) • elosulfase alfa (Vimizim®) • galsulfase (Naglazyme®) • idursulfase (Elaprase®) • laronidase (Aldurazyme®) • migalastat (Galafold™) • miglustat (Zavesca®) • sacrosidase (Sucraid®) • sebelipase alfa (Kanuma®) • vestronidase alfa-vjbk (Mepsevii™) Enzyme related therapies are considered medically necessary when the following criteria are met: Page 1 of 16 Coverage Policy Number: 1319 Product Criteria for Use Aldurazyme Both of the following are met: (laronidase) • Mucopolysaccharidosis I (MPS I) with one of the following forms: o Severe mucopolysaccharidosis I (MPS I) o Attenuated mucopolysaccharidosis I (MPS I) with moderate to severe symptoms • Diagnosis documented by either of the following: o Demonstrated deficiency of alpha-L-iduronidase (for example, in peripheral blood leukocytes, plasma, or cultured fibroblasts) in the absence of a pseudodeficiency allele o Confirmation of biallelic pathogenic or likely pathogenic variants in the IDUA gene Cerdelga Individual is an adult and meets both of the following: (eliglustat) • Gaucher disease type 1 with diagnosis documented by either of the following: o Deficiency of glucosylceramidase [also known as acid β-glucosidase or glucocerebrosidase] in peripheral blood leukocytes or other nucleated cells o Confirmation of biallelic pathogenic variants in the GBA gene • One of the following: o CYP2D6 extensive metabolizer (EM) o CYP2D6 intermediate metabolizer (IM) o CYP2D6 poor metabolizer (PM) Eliglustat (Cerdelga) is considered experimental, investigational or unproven for ANY other use including the following: • CYP2D6 ultra-rapid metabolizers • CYP2D6 indeterminate metabolizers • Concomitant use with Zavesca or other treatments approved for Gaucher disease Elaprase Hunter syndrome [Mucopolysaccharidosis II (MPS II)] with diagnosis documented by (idursulfase) either of the following: • Deficiency of iduronidate 2-sulfatase in leukocytes, fibroblasts, or plasma and documentation of normal enzymatic activity of at least one other sulfatase in the same tissue type • Confirmation of a hemizygous pathogenic variant in the IDS gene Fabrazyme Fabry disease with diagnosis documented by ALL of the following: (agalsidase beta) • ONE of the following: o Deficiency of alpha-galactosidase A in plasma or peripheral leukocytes o Confirmation of a hemizygous pathogenic variant in the GLA gene • No concomitant use of Galafold (migalastat) Galafold All of the following are met: (migalastat) • Documented diagnosis of Fabry disease in an adult • Confirmed pathogenic or likely pathogenic variant in the GLA gene known to cause Fabry disease AND • Amenable mutation identified in GLA for use with Galafold • No concomitant use of Fabrazyme (agalsidase) Kanuma Lysosomal Acid Lipase (LAL) Deficiency (Wolman disease, cholesteryl ester storage (sebelipase alfa) disease [CESD]) with diagnosis documented by either of the following: • Deficiency of LAL in peripheral blood leukocytes, fibroblasts, or dried blood spots • Confirmation of biallelic pathogenic variants in the LIPA gene Lumizyme Pompe disease with diagnosis documented by either of the following: (alglucosidase alfa) • Deficiency of acid alpha-glucosidase in leukocytes or skin fibroblasts in the absence of a pseudodeficiency allele • Confirmation of biallelic pathogenic or likely pathogenic variants in the GAA gene Page 2 of 16 Coverage Policy Number: 1319 Product Criteria for Use Mepsevii Mucopolysaccharidosis VII (MPS VII, Sly syndrome) with diagnosis documented by (vestronidase alfa- either of the following: vjbk) • Deficiency of beta-glucuronidase in peripheral blood leukocytes or cultured fibroblasts • Genetic testing confirming mutations in the GUSB gene Naglazyme Mucopolysaccharidosis VI (MPS VI, Maroteaux-4 Lamy syndrome) with diagnosis (galsulfase) documented by either of the following: • Deficiency of N-acetylgalactosamine 4-sulfatase [ARSB] in leukocytes, fibroblasts, and dried blood spots • Confirmation of biallelic pathogenic variants in the ARSB gene Revcovi Adenosine deaminase severe combined immune deficiency (ADA-SCID) with (elapegademase-lvlr) diagnosis documented by either of the following: • Documented adenosine deaminase (ADA) deficiency (in hemolysates or in other cells if recent transfusion) consistent with the diagnosis of ADA-SCID • Confirmation of biallelic pathogenic variants or likely pathogenic in the ADA gene Strensiq All of the following are met: (asfotase alfa) • Documented diagnosis of perinatal/infantile-onset or juvenile-onset hypophosphatasia (HPP) • Total serum alkaline phosphatase (ALP) activity level below the lower limit of normal for age • Elevated serum pyridoxal 5’-phosphate (PLP) level • Radiologic evidence and clinical features of hypophosphatasia present • Confirmation of either a monoallelic or biallelic pathogenic variant(s) in the ALPL gene Sucraid BOTH of the following criteria are met: (sacrosidase) • Documentation of symptomatic congenital sucrose-isomaltase deficiency (CSID) (for example, diarrhea, bloating, abdominal cramping) • Diagnosis is confirmed by ONE of the following: o Endoscopic biopsy of the small bowel with disaccharidase levels consistent with CSID as evidenced by ALL of the following*: . Decreased (usually absent) sucrose (normal reference: greater than 25U/g protein) . Decreased to normal isomaltase (palatinase) (normal reference: greater than 5U/g protein) . Decreased maltase (normal reference: greater than 100 U/g protein) . Decreased to normal lactase (normal reference: greater than 15 U/g protein) o Documentation of homozygous or compound heterozygous pathogenic or likely pathogenic mutations in the sucrose-isomaltase (SI) gene *OR below the reporting lab’s normal reference range, if noted. Initial approval duration is 6 months. Reauthorization of Sucraid for 12 months requires evidence of beneficial clinical response. Vimizim Mucopolysaccharidosis IVA (MPS IVA, Morquio A syndrome) with diagnosis (elosulfase alfa) documented by either of the following: • Deficiency of N-acetylgalactosamine-6-sulphatase (GALNS) in cultured fibroblasts or leukocytes • Confirmation of biallelic pathogenic variants in the GALNS gene Zavesca Mild to moderate Gaucher disease type 1 in an adult and ALL of the following: (miglustat) • ONE of the following o Documented deficiency of glucosylceramidase (also known as acid β- glucosidase or glucocerebrosidase) in peripheral blood leukocytes or other nucleated Page 3 of 16 Coverage Policy Number: 1319 Product Criteria for Use o Confirmation of biallelic pathogenic variants in the GBA gene • Will be used as monotherapy • Not a candidate for enzyme replacement therapy AND • ONE of the following o History of beneficial clinical response to Zavesca o Documented failure/inadequate response, contraindication per FDA label,
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology

    Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology

    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
  • Epidemiology of Mucopolysaccharidoses Update

    Epidemiology of Mucopolysaccharidoses Update

    diagnostics Review Epidemiology of Mucopolysaccharidoses Update Betul Celik 1,2 , Saori C. Tomatsu 2 , Shunji Tomatsu 1 and Shaukat A. Khan 1,* 1 Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; [email protected] (B.C.); [email protected] (S.T.) 2 Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel.: +302-298-7335; Fax: +302-651-6888 Abstract: Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a lysosomal enzyme deficiency or malfunction, which leads to the accumulation of glycosaminoglycans in tissues and organs. If not treated at an early stage, patients have various health problems, affecting their quality of life and life-span. Two therapeutic options for MPS are widely used in practice: enzyme replacement therapy and hematopoietic stem cell transplantation. However, early diagnosis of MPS is crucial, as treatment may be too late to reverse or ameliorate the disease progress. It has been noted that the prevalence of MPS and each subtype varies based on geographic regions and/or ethnic background. Each type of MPS is caused by a wide range of the mutational spectrum, mainly missense mutations. Some mutations were derived from the common founder effect. In the previous study, Khan et al. 2018 have reported the epidemiology of MPS from 22 countries and 16 regions. In this study, we aimed to update the prevalence of MPS across the world. We have collected and investigated 189 publications related to the prevalence of MPS via PubMed as of December 2020. In total, data from 33 countries and 23 regions were compiled and analyzed.
  • List of Approved Ndas for Biological Products That Were Deemed to Be Blas on March 23, 2020

    List of Approved Ndas for Biological Products That Were Deemed to Be Blas on March 23, 2020

    List of Approved NDAs for Biological Products That Were Deemed to be BLAs on March 23, 2020 On March 23, 2020, an approved application for a biological product under section 505 of the Federal Food, Drug, and Cosmetic Act (FD&C Act) was deemed to be a license for the biological product under section 351 of the Public Health Service Act (PHS Act) (see section 7002(e)(4)(A) of the Biologics Price Competition and Innovation Act of 2009). To enhance transparency and facilitate planning for the March 23, 2020, transition date, FDA compiled a preliminary list of approved applications for biological products under the FD&C Act that were listed in FDA’s Approved Drug Products with Therapeutic Equivalence Evaluations (the Orange Book) and that would be affected by this transition provision. FDA posted this list on the FDA website in December 2018, and periodically updated this list before the March 23, 2020, transition date. The September 2019 update to this preliminary list added certain administratively closed applications related to approved applications for biological products that were on the December 2018 version of this list. The January 2020 update to the preliminary list reflected a change to the definition of “biological product” made by the Further Consolidated Appropriations Act, 2020, which was enacted on December 20, 2019. Section 605 of this Act further amended the definition of a “biological product” in section 351(i) of the PHS Act to remove the parenthetical “(except any chemically synthesized polypeptide)” from the statutory category of “protein.” FDA has provided below a list of each approved application for a biological product under the FD&C Act that was deemed to be a license (i.e., an approved biologics license application (BLA)) for the biological product on March 23, 2020.
  • AHFS Pharmacologic-Therapeutic Classification System

    AHFS Pharmacologic-Therapeutic Classification System

    AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective
  • Uptake of -(L)-Iduronidase Produced by Retrovirally Transduced

    Uptake of -(L)-Iduronidase Produced by Retrovirally Transduced

    Gene Therapy (1997) 4, 63–75 1997 Stockton Press All rights reserved 0969-7128/97 $12.00 Uptake of a-(L)-iduronidase produced by retrovirally transduced fibroblasts into neuronal and glial cells in vitro K Stewart1, OA Brown1, AE Morelli1, LJ Fairbairn2, LS Lashford2,3, A Cooper4, CE Hatton4, TM Dexter2, MG Castro1 and PR Lowenstein1 1Molecular Medicine Unit, Department of Medicine, University of Manchester School of Medicine; 2CRC Department of Experimental Haematology, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester; 3Academic Unit of Pediatric Oncology, Christie Hospital NHS Trust, Manchester; and 4Willink Biochemical Genetics Unit, Royal Manchester Children’s Hospital, Manchester, UK The uptake of recombinant a-(L)-iduronidase into glial and higher in actively dividing or immature brain cells. Conse- neuronal cells, produced by retrovirally transduced NIH3T3 quently, (1) neuronal metabolism ought to be capable of fibroblasts, was studied. We demonstrate that: (1) neuronal cross correction by enzyme provided by genetically engine- and glial cells take up a-(L)-iduronidase released into the ered and transplanted cells provided by bone marrow medium by retrovirally transduced fibroblasts expressing transplantation (BMT); (2) that BMT could have a more high levels of a-(L)-iduronidase; (2) both glial and neuronal beneficial effect on neurological function if performed as cells express the cation independent mannose-6-phos- early as possible; and (3) given that the uptake mechanism phate receptor responsible for lysosomal enzyme uptake; of glial cells has a higher capacity, it might be easier to and (3) uptake of the lysosomal enzyme can be blocked target diseases like the leukodystrophies in which lysoso- by excess free mannose-6-phosphate, but not glucose-6- mal enzymes are needed in glial cells, compared to dis- phosphate.
  • Ten Years of the Hunter Outcome Survey (HOS): Insights, Achievements, and Lessons Learned from a Global Patient Registry Joseph Muenzer1, Simon A

    Ten Years of the Hunter Outcome Survey (HOS): Insights, Achievements, and Lessons Learned from a Global Patient Registry Joseph Muenzer1, Simon A

    Muenzer et al. Orphanet Journal of Rare Diseases (2017) 12:82 DOI 10.1186/s13023-017-0635-z REVIEW Open Access Ten years of the Hunter Outcome Survey (HOS): insights, achievements, and lessons learned from a global patient registry Joseph Muenzer1, Simon A. Jones2, Anna Tylki-Szymańska3, Paul Harmatz4, Nancy J. Mendelsohn5,6, Nathalie Guffon7, Roberto Giugliani8, Barbara K. Burton9, Maurizio Scarpa10,11, Michael Beck12, Yvonne Jangelind13, Elizabeth Hernberg-Stahl14, Maria Paabøl Larsen15,17, Tom Pulles16,18 and David A. H. Whiteman15* Abstract Mucopolysaccharidosis type II (MPS II; Hunter syndrome; OMIM 309900) is a rare lysosomal storage disease with progressive multisystem manifestations caused by deficient activity of the enzyme iduronate-2-sulfatase. Disease- specific treatment is available in the form of enzyme replacement therapy with intravenous idursulfase (Elaprase®, Shire). Since 2005, the Hunter Outcome Survey (HOS) has collected real-world, long-term data on the safety and effectiveness of this therapy, as well as the natural history of MPS II. Individuals with a confirmed diagnosis of MPS II who are untreated or who are receiving/have received treatment with idursulfase or bone marrow transplant can be enrolled in HOS. A broad range of disease- and treatment-related information is captured in the registry and, over the past decade, data from more than 1000 patients from 124 clinics in 29 countries have been collected. Evidence generated from HOS has helped to improve our understanding of disease progression in both treated and untreated patients and has extended findings from the formal clinical trials of idursulfase. As a long-term, global, observational registry, various challenges relating to data collection, entry, and analysis have been encountered.
  • WO 2017/173059 Al 5 October 2017 (05.10.2017) P O P C T

    WO 2017/173059 Al 5 October 2017 (05.10.2017) P O P C T

    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/173059 Al 5 October 2017 (05.10.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, C12N 9/26 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (21) International Application Number: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, PCT/US20 17/024981 MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (22) International Filing Date: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, 30 March 2017 (30.03.2017) RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (25) Filing Language: English ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/3 15,400 30 March 2016 (30.03.2016) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/457,584 10 February 2017 (10.02.2017) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 15/473,994 30 March 2017 (30.03.2017) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: AMICUS THERAPEUTICS, INC.
  • Publications in Scientific Journals (Peer Reviewed) 1

    Publications in Scientific Journals (Peer Reviewed) 1

    Last Updated July 2020 Publications in Scientific Journals (Peer Reviewed) 1. Eisengart JB, King KE, Shapiro EG, Whitley CB, Muenzer J. The nature and impact of neurobehavioral symptoms in neuronopathic Hunter syndrome. Mol Genet Metab Rep. 2019 Dec 20;22:100549. PMID: 32055445 2. Viskochil D, Clarke LA, Bay L, Keenan H, Muenzer J, Guffon N. Growth patterns for untreated individuals with MPS I: Report from the international MPS I registry. Am J Med Genet A. 2019 Dec;179(12):2425-2432. PMID: 31639289 3. Clarke LA, Giugliani R, Guffon N, Jones SA, Keenan HA, Munoz-Rojas MV, Okuyama T, Viskochil D, Whitley CB, Wijburg FA, Muenzer J. Genotype-phenotype relationships in mucopolysaccharidosis type I (MPS I): Insights from the International MPS I Registry. Clin Genet. 2019 Clin Genet. 2019 Oct;96(4):281-289. PMID: 31194252 4. Taylor JL, Clinard K, Powell CM, Rehder C, Young SP, Bali D, Beckloff SE, Gehtland LM, Kemper AR, Lee S, Millington D, Patel HS, Shone SM, Woodell C, Zimmerman SJ, Bailey DB Jr, Muenzer J. The North Carolina Experience with Mucopolysaccharidosis Type I Newborn Screening. J Pediatr. 2019 Aug;211:193-200. PMID: 31133280 5. Akyol MU, Alden TD, Amartino H, Ashworth J, Belani K, Berger KI, Borgo A, Braunlin E, Eto Y, Gold JI, Jester A, Jones SA, Karsli C, Mackenzie W, Marinho DR, McFadyen A, McGill J, Mitchell JJ, Muenzer J, Okuyama T, Orchard PJ, Stevens B, Thomas S, Walker R, Wynn R, Giugliani R, Harmatz P, Hendriksz C, Scarpa M; MPS Consensus Programme Steering Committee; MPS Consensus Programme Co-Chairs.
  • Functional Characterization of Carbohydrate-Active Enzymes from Marine Bacteria

    Functional Characterization of Carbohydrate-Active Enzymes from Marine Bacteria

    Functional characterization of carbohydrate-active enzymes from marine bacteria I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Greifswald vorgelegt von Marcus Bäumgen Greifswald, 28.02.2020 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Uwe T. Bornscheuer 2. Gutachter: Prof. Dr. Harry Brumer Tag der Promotion: 24.06.2020 II III Wissenschaft ist das Werkzeug, welches es uns ermöglicht, das große Puzzel der Natur und des Lebens zu lösen. IV Auch wenn wir den Weg des Wissens und der Weisheit niemals bis zum Ende beschreiten können, so ist doch jeder Schritt, den wir tun, ein Schritt in eine bessere Welt. V Content Abbreviations ..................................................................................................................... IX 1. Introduction ..................................................................................................................... 1 1.1 The marine carbon cycle .............................................................................................. 1 1.1.1 Algal blooms .......................................................................................................... 1 1.1.2 The marine carbohydrates ulvan and xylan ........................................................... 2 1.1.3 Marine polysaccharide utilization ........................................................................... 4 1.2 Carbohydrate-active enzymes
  • European Medicines Agency Accepts Marketing Authorization Application for Asfotase Alfa As a Treatment for Patients with Hypophosphatasia

    European Medicines Agency Accepts Marketing Authorization Application for Asfotase Alfa As a Treatment for Patients with Hypophosphatasia

    July 24, 2014 European Medicines Agency Accepts Marketing Authorization Application for Asfotase Alfa as a Treatment for Patients with Hypophosphatasia -- Application designated for review under accelerated assessment process -- CHESHIRE, Conn.--(BUSINESS WIRE)-- Alexion Pharmaceuticals, Inc. (NASDAQ:ALXN) today announced that the Marketing Authorization Application (MAA) for asfotase alfa, an investigational, first-in-class targeted enzyme replacement therapy for the treatment of hypophosphatasia (HPP), has been validated and granted accelerated assessment by the European Medicines Agency (EMA). The acceptance of this MAA marks the beginning of the review process in the European Union (EU) for this potential new treatment. "HPP is a devastating disease for patients and their families due to progressive deterioration of bones and muscle weakness, which can result in impaired respiratory function, severe disability and death," said Leonard Bell, M.D., Chief Executive Officer of Alexion. "If approved, asfotase alfa would be the first therapy for patients with this life-threatening disorder." The EU filing includes positive data from 68 patients with pediatric-onset HPP (ranging from newborns to 66 years of age) enrolled in three pivotal prospective studies and their extensions, as well as a retrospective natural history study in infants. In April, Alexion initiated the rolling submission of a Biologics License Application (BLA) for asfotase alfa as a treatment for patients with HPP with the U.S. Food and Drug Administration (FDA). About
  • Enzyme Replacement Therapy Srx-0019 Policy Type ☒ Medical ☐ Administrative ☐ Payment

    Enzyme Replacement Therapy Srx-0019 Policy Type ☒ Medical ☐ Administrative ☐ Payment

    MEDICAL POLICY STATEMENT Original Effective Date Next Annual Review Date Last Review / Revision Date 06/15/2011 03/15/2017 10/04/2016 Policy Name Policy Number Enzyme Replacement Therapy SRx-0019 Policy Type ☒ Medical ☐ Administrative ☐ Payment Medical Policy Statements prepared by CSMG Co. and its affiliates (including CareSource) are derived from literature based on and supported by clinical guidelines, nationally recognized utilization and technology assessment guidelines, other medical management industry standards, and published MCO clinical policy guidelines. Medically necessary services include, but are not limited to, those health care services or supplies that are proper and necessary for the diagnosis or treatment of disease, illness, or injury and without which the patient can be expected to suffer prolonged, increased or new morbidity, impairment of function, dysfunction of a body organ or part, or significant pain and discomfort. These services meet the standards of good medical practice in the local area, are the lowest cost alternative, and are not provided mainly for the convenience of the member or provider. Medically necessary services also include those services defined in any Evidence of Coverage documents, Medical Policy Statements, Provider Manuals, Member Handbooks, and/or other policies and procedures. Medical Policy Statements prepared by CSMG Co. and its affiliates (including CareSource) do not ensure an authorization or payment of services. Please refer to the plan contract (often referred to as the Evidence of Coverage) for the service(s) referenced in the Medical Policy Statement. If there is a conflict between the Medical Policy Statement and the plan contract (i.e., Evidence of Coverage), then the plan contract (i.e., Evidence of Coverage) will be the controlling document used to make the determination.
  • Asfotase Alfa for Infants and Young Children with Hypophosphatasia: 7 Year Outcomes of a Single-Arm, Open-Label, Phase 2 Extension Trial

    Asfotase Alfa for Infants and Young Children with Hypophosphatasia: 7 Year Outcomes of a Single-Arm, Open-Label, Phase 2 Extension Trial

    Articles Asfotase alfa for infants and young children with hypophosphatasia: 7 year outcomes of a single-arm, open-label, phase 2 extension trial Michael P Whyte, Jill H Simmons, Scott Moseley, Kenji P Fujita, Nicholas Bishop, Nada J Salman, John Taylor, Dawn Phillips, Mairead McGinn, William H McAlister Summary Background Our previous phase 2, open-label study of 11 infants and young children with life-threatening perinatal or Lancet Diabetes Endocrinol infantile hypophosphatasia showed 1 year safety and efficacy of asfotase alfa, an enzyme replacement therapy. We 2019; 7: 93–105 aimed to report the long-term outcomes over approximately 7 years of treatment. Published Online December 14, 2018 http://dx.doi.org/10.1016/ Methods We did a prespecified, end of study, 7 year follow-up of our single-arm, open-label, phase 2 trial in which S2213-8587(18)30307-3 children aged 3 years or younger with life-threatening perinatal or infantile hypophosphatasia were recruited from This online publication has been ten hospitals (six in the USA, two in the UK, one in Canada, and one in the United Arab Emirates). Patients received corrected. The corrected version asfotase alfa (1 mg/kg three times per week subcutaneously, adjusted to 3 mg/kg three times per week if required) for first appeared at thelancet. up to 7 years (primary treatment period plus extension phase) or until the product became commercially available; com/diabetes-endocrinology on January 22, 2019 dosage adjustments were made at each visit according to changes in the patient’s weight. The primary objectives of See Comment page 76 this extension study were to assess the long-term tolerability of asfotase alfa, defined as the number of patients with Center for Metabolic Bone one or more treatment-emergent adverse events, and skeletal manifestations associated with hypophosphatasia, Disease and Molecular evaluated using the Radiographic Global Impression of Change (RGI-C) scale (−3 indicating severe worsening, and Research, Shriners Hospital for +3 complete or near-complete healing).