Characterization of a Mucopolysaccharidosis Type I and Galnac Transferase Deficiency Double Knockout Mouse Karan Gera Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of a Mucopolysaccharidosis Type I and Galnac Transferase Deficiency Double Knockout Mouse Karan Gera Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Characterization of a Mucopolysaccharidosis Type I and GalNAc Transferase deficiency double knockout mouse Karan Gera Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Cell Biology Commons, Developmental Biology Commons, and the Molecular Biology Commons Recommended Citation Gera, Karan, "Characterization of a Mucopolysaccharidosis Type I and GalNAc Transferase deficiency double knockout mouse" (2018). Graduate Theses and Dissertations. 16582. https://lib.dr.iastate.edu/etd/16582 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Characterization of a Mucopolysaccharidosis Type I and GalNAc Transferase deficiency double knockout mouse by Karan Gera A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Molecular, Cellular and Developmental Biology Program of Study Committee: N. Matthew Ellinwood, Major Professor Jodi Dee Smith Donald Sakaguchi The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Karan Gera, 2018. All rights reserved. ii TABLE OF CONTENTS LIST OF FIGURES .......................................................................................................... iv LIST OF TABLES ............................................................................................................. v LIST OF ABBREVIATIONS ........................................................................................... vi ACKNOWLEDGMENTS ............................................................................................... vii ABSTRACT .................................................................................................................... viii Endosomal-Lysosomal Vesicle Trafficking Pathway ................................................ 10 Lysosomal Storage Diseases ...................................................................................... 12 The Mucopolysaccharidoses ....................................................................................... 13 History and clinical characteristics........................................................................ 16 Treatment of MPS diseases ................................................................................... 19 Mucopolysaccharidosis Type I ................................................................................... 20 Molecular Genetics................................................................................................ 21 Clinical Pathology of MPS I ....................................................................................... 21 Biochemical and histological features ................................................................... 21 Morphological observations .................................................................................. 27 Central nervous system morphology ................................................................ 27 Bone and joint disease ...................................................................................... 27 Cardiovascular and respiratory pathology ....................................................... 28 Ophthalmic Pathology ...................................................................................... 28 Cognitive and Behavioral Problems ................................................................ 29 Animal Models of MPS I ................................................................................. 29 Therapeutic Strategies for MPS I ............................................................................... 31 Improvement Of α-L-Iduronidase Activity ........................................................... 32 Hematopoietic stem cell transplantation (HSCT) ............................................ 32 Enzyme replacement therapy (ERT) ................................................................ 34 Gene Therapy ................................................................................................... 37 Substrate Deprivation Therapy ........................................................................ 40 Management of Secondary Immune Responses .............................................. 41 References .................................................................................................................. 42 CHAPTER 2: CHARACTERIZATION OF A MUCOPOLYSACCHARIDOSIS TYPE I AND GALNAC TRANSFERASE DEFICIENCY DOUBLE KNOCKOUT MOUSE............................................................................................................................ 49 Introduction ................................................................................................................ 49 Materials & Methods .................................................................................................. 53 Experimental animals ............................................................................................ 53 Genotyping ............................................................................................................ 54 Clinical observations ............................................................................................. 55 Euthanasia and tissue processing .......................................................................... 55 iii Results ........................................................................................................................ 56 Genotyping ............................................................................................................ 56 Clinical observations ............................................................................................. 56 Gross findings........................................................................................................ 57 References .................................................................................................................. 59 CHAPTER 3: CONCLUSIONS ...................................................................................... 61 REFERENCES ................................................................................................................ 62 iv LIST OF FIGURES Figure 1.1 The endosomal-lysosomal pathway ..............................................................11 Figure 1.2 Classification of Lysosomal Storage Diseases ..............................................14 Figure 1.3 Degradation pathways and associated enzymes for various GAGs ..............15 Figure 1.4 Heparan sulfate degradation pathway ...........................................................23 Figure 1.5 Dermatan sulfate degradation pathway .........................................................24 Figure 2.1. Idua amplified PCR sequences on a 2% agarose gel……………................56 Figure 2.2 GalNAcT amplified PCR sequences on a 2% agarose gel…....……............56 Figure 2.3 Gross findings of 20 - week old mice upon dissection………...……...........58 v LIST OF TABLES Table 1.1. A list of the Mucopolysaccharidoses ............................................................18 Table 2.1 Specifications of the primers used in PCR genotyping ..................................54 vi LIST OF ABBREVIATIONS AAV Adeno-associated virus Idua α-L-Iduronidase (murine) ATP Adenosine Triphosphate LSD Lysosomal Storage Disease CNS Central nervous system KS Keratan sulfate CS Chondroitin sulfate mAb Monoclonal Antibody CSF Cerebrospinal Fluid MPS Mucopolysaccharidosis Damage associated molecular Online Mendelian Inheritance DAMP OMIM pattern in Man DNA Deoxyribonucleic acid PCR Polymerase Chain Reaction Recombinant deoxyribonucleic DS Dermatan sulfate rDNA acid ECM Extracellular matrix ROS Reactive oxygen species EDTA Ethylenediaminetetraacetic acid TGN Trans-golgi network ERT Enzyme replacement therapy ZFN Zinc-finger nuclease ES/ESC Embryonic Stem Cells GAG Glycosaminoglycan β-1,4-N- GalNAcT acetylgalactosaminyltransferase GTP Guanosine Triphosphate HA Hyaluronic acid HLA Human leukocyte antigen HS Heparan sulfate Hematopoietic stem cell HSCT transplantation HSPG Heparan sulfate proteoglycan IDUA α-L-Iduronidase (human) vii ACKNOWLEDGMENTS The research illustrated in this thesis reflects one of the most crucial phases of my growth and development in the field of biological sciences, which would not have been possible without the staunch, unerring tutelage and guidance of my major professor Dr. N. Matthew Ellinwood. For introducing me to the lysosomal storage diseases and inspiring me to be the best version of myself while striving to work in the field to serve a greater purpose, I will be forever grateful to him. I extend my gratitude to Dr. Jodi Smith and Dr. Don Sakaguchi, both of whom have been not just my committee members but also my instructors throughout this time, keenly advising me where necessary. This was not an individual endeavor. It is the culmination
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • Epidemiology of Mucopolysaccharidoses Update
    diagnostics Review Epidemiology of Mucopolysaccharidoses Update Betul Celik 1,2 , Saori C. Tomatsu 2 , Shunji Tomatsu 1 and Shaukat A. Khan 1,* 1 Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; [email protected] (B.C.); [email protected] (S.T.) 2 Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel.: +302-298-7335; Fax: +302-651-6888 Abstract: Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a lysosomal enzyme deficiency or malfunction, which leads to the accumulation of glycosaminoglycans in tissues and organs. If not treated at an early stage, patients have various health problems, affecting their quality of life and life-span. Two therapeutic options for MPS are widely used in practice: enzyme replacement therapy and hematopoietic stem cell transplantation. However, early diagnosis of MPS is crucial, as treatment may be too late to reverse or ameliorate the disease progress. It has been noted that the prevalence of MPS and each subtype varies based on geographic regions and/or ethnic background. Each type of MPS is caused by a wide range of the mutational spectrum, mainly missense mutations. Some mutations were derived from the common founder effect. In the previous study, Khan et al. 2018 have reported the epidemiology of MPS from 22 countries and 16 regions. In this study, we aimed to update the prevalence of MPS across the world. We have collected and investigated 189 publications related to the prevalence of MPS via PubMed as of December 2020. In total, data from 33 countries and 23 regions were compiled and analyzed.
    [Show full text]
  • Uptake of -(L)-Iduronidase Produced by Retrovirally Transduced
    Gene Therapy (1997) 4, 63–75 1997 Stockton Press All rights reserved 0969-7128/97 $12.00 Uptake of a-(L)-iduronidase produced by retrovirally transduced fibroblasts into neuronal and glial cells in vitro K Stewart1, OA Brown1, AE Morelli1, LJ Fairbairn2, LS Lashford2,3, A Cooper4, CE Hatton4, TM Dexter2, MG Castro1 and PR Lowenstein1 1Molecular Medicine Unit, Department of Medicine, University of Manchester School of Medicine; 2CRC Department of Experimental Haematology, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester; 3Academic Unit of Pediatric Oncology, Christie Hospital NHS Trust, Manchester; and 4Willink Biochemical Genetics Unit, Royal Manchester Children’s Hospital, Manchester, UK The uptake of recombinant a-(L)-iduronidase into glial and higher in actively dividing or immature brain cells. Conse- neuronal cells, produced by retrovirally transduced NIH3T3 quently, (1) neuronal metabolism ought to be capable of fibroblasts, was studied. We demonstrate that: (1) neuronal cross correction by enzyme provided by genetically engine- and glial cells take up a-(L)-iduronidase released into the ered and transplanted cells provided by bone marrow medium by retrovirally transduced fibroblasts expressing transplantation (BMT); (2) that BMT could have a more high levels of a-(L)-iduronidase; (2) both glial and neuronal beneficial effect on neurological function if performed as cells express the cation independent mannose-6-phos- early as possible; and (3) given that the uptake mechanism phate receptor responsible for lysosomal enzyme uptake; of glial cells has a higher capacity, it might be easier to and (3) uptake of the lysosomal enzyme can be blocked target diseases like the leukodystrophies in which lysoso- by excess free mannose-6-phosphate, but not glucose-6- mal enzymes are needed in glial cells, compared to dis- phosphate.
    [Show full text]
  • Open CR-Thesis-Final-Final.Pdf
    The Pennsylvania State University The Graduate School IDENTIFICATION OF GENETIC FACTORS THAT AFFECT NEURONAL PATTERNING, FUNCTION, AND DISEASE IN DROSOPHILA MELANOGASTER A Dissertation in Biochemistry, Microbiology, and Molecular Biology by Claire Elizabeth Reynolds Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2017 The dissertation of Claire Elizabeth Reynolds was reviewed and approved* by the following: Scott B Selleck Professor of Biochemistry & Molecular Biology Dissertation Co-Advisor Chair of Committee Santhosh Girirajan Assistant Professor of Biochemistry & Molecular Biology Assistant Professor of Anthropology Dissertation Co-Advisor Joseph Reese Professor of Biochemistry & Molecular Biology Marylyn Ritchie Director, Center for Systems Genomics Director, Biomedical & Translational Informatics Program of Geisinger Research Professor of Biochemistry & Molecular Biology Richard Ordway Professor of Molecular Neuroscience and Genetics Wendy Hanna-Rose Associate Professor of Biochemistry & Molecular Biology Interim Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School ii ABSTRACT Heparan Sulfate Proteoglycans (HSPGs) are required for normal synaptic development at the Drosophila melanogaster larval neuromuscular junction (NMJ). When enzymes required for biosynthesis of HSPGs are inhibited through mutations of RNA interference, a variety of morphological and electrophysiological defects are observed at the NMJ. These defects included changes in the post-synaptic specialization of the muscle (the SSR), loss of mitochondria from the sub-synaptic cytosol, and abnormal mitochondrial morphology. Identification of autophagic regulation as the mechanism by which HSPGs influenced synaptic properties was the foundation of this dissertation. The present work more fully characterizes the influence of HSPG function on autophagic markers in muscle tissue.
    [Show full text]
  • Pathophysiology of Mucopolysaccharidosis
    Pathophysiology of Mucopolysaccharidosis Dr. Christina Lampe, MD The Center for Rare Diseases, Clinics for Pediatric and Adolescent Medicine Helios Dr. Horst Schmidt Kliniken, Wiesbaden, Germany Inborn Errors of Metabolism today - more than 500 diseases (~10 % of the known genetic diseases) 5000 genetic diseases - all areas of metabolism involved - vast majority are recessive conditions 500 metabolic disorders - individually rare or very rare - overall frequency around 1:800 50 LSD (similar to Down syndrome) LSDs: 1: 5.000 live births MPS: 1: 25.000 live births 7 MPS understanding of pathophysiology and early diagnosis leading to successful therapy for several conditions The Lysosomal Diseases (LSD) TAY SACHS DIS. 4% WOLMAN DIS. ASPARTYLGLUCOSAMINURIA SIALIC ACID DIS. SIALIDOSIS CYSTINOSIS 4% SANDHOFF DIS. 2% FABRY DIS. 7% POMPE 5% NIEMANN PICK C 4% GAUCHER DIS. 14% Mucopolysaccharidosis NIEMANN PICK A-B 3% MULTIPLE SULPH. DEF. Mucolipidosis MUCOLIPIDOSIS I-II 2% Sphingolipidosis MPSVII Oligosaccharidosis GM1 GANGLIOSIDOSIS 2% MPSVI Neuronale Ceroid Lipofuszinois KRABBE DIS. 5% MPSIVA others MPSIII D A-MANNOSIDOSIS MPSIII C MPSIIIB METACHROMATIC LEUKOD. 8% MPS 34% MPSIIIA MPSI MPSII Initial Description of MPS Charles Hunter, 1917: “A Rare Disease in Two Brothers” brothers: 10 and 8 years hearing loss dwarfism macrocephaly cardiomegaly umbilical hernia joint contractures skeletal dysplasia death at the age of 11 and 16 years Description of the MPS Types... M. Hunter - MPS II (1917) M. Hurler - MPS I (1919) M. Morquio - MPS IV (1929) M. Sanfilippo - MPS III (1963) M. Maroteaux-Lamy - MPS IV (1963) M. Sly - MPS VII (1969) M. Scheie - MPS I (MPS V) (1968) M. Natowicz - MPS IX (1996) The Lysosome Lysosomes are..
    [Show full text]
  • Functional Characterization of Carbohydrate-Active Enzymes from Marine Bacteria
    Functional characterization of carbohydrate-active enzymes from marine bacteria I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Greifswald vorgelegt von Marcus Bäumgen Greifswald, 28.02.2020 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Uwe T. Bornscheuer 2. Gutachter: Prof. Dr. Harry Brumer Tag der Promotion: 24.06.2020 II III Wissenschaft ist das Werkzeug, welches es uns ermöglicht, das große Puzzel der Natur und des Lebens zu lösen. IV Auch wenn wir den Weg des Wissens und der Weisheit niemals bis zum Ende beschreiten können, so ist doch jeder Schritt, den wir tun, ein Schritt in eine bessere Welt. V Content Abbreviations ..................................................................................................................... IX 1. Introduction ..................................................................................................................... 1 1.1 The marine carbon cycle .............................................................................................. 1 1.1.1 Algal blooms .......................................................................................................... 1 1.1.2 The marine carbohydrates ulvan and xylan ........................................................... 2 1.1.3 Marine polysaccharide utilization ........................................................................... 4 1.2 Carbohydrate-active enzymes
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • Alpha-L-Iduronidase Transduced Mesenchymal Stem Cells As A
    ALPHA-L-IDURONIDASE TRANSDUCED MESENCHYMAL STEM CELLS AS A THERAPY FOR THE TREATMENT OF CNS DEGENERATION IN MUCOPOLYSACCHARIDOSIS TYPE I MICE Matilda Jackson BMSc, BSc (Hons) Matrix Biology Unit SA Pathology Thesis submitted for the degree of Doctor of Philosophy in Discipline of Genetics School of Molecular and Biomedical Sciences Faculty of Science The University of Adelaide Table of contents Abstract........................................................................................................... vii Declaration....................................................................................................... ix Acknowledgements ........................................................................................... x Abbreviations .................................................................................................. xi Chapter One: Introduction .............................................................................. 1 1.0 Overview .................................................................................................................... 2 1.1 The Mucopolysaccharidoses .................................................................................... 3 1.1.1 Mucopolysaccharidoses type I......................................................................................... 5 1.1.2 Central Nervous System (CNS) pathology ...................................................................... 7 1.1.3 Bone pathology ..............................................................................................................
    [Show full text]
  • Enzyme-Replacement Therapy in Mucopolysaccharidoses with A
    Enzyme-replacement Therapy in Mucopolysaccharidoses with a Specific Focus on MPS VI Enzym vervangende therapie in de mucopolysaccharidosen met specifieke aandacht voor MPS VI proefschrift.indb 1 27-8-2013 16:01:52 Financial support for this project was obtained from ZonMw (the Netherlands Organisation for Health Research and Development), the Dutch TI Pharma initiative “Sustainable Orphan Drug Development through Registries and Monitoring”, European Union, 7th Framework programme EUCLYD – European Consortium for Lysosomal Storage Disorders. Printing of this thesis was financially supported by: BioMarin Pharmaceutical Shire International Licensing BV ISBN: 978-90-6464-700-0 Lay-out: Chris Bor Medical Photography and Illustration, Academic Medical Center, Amsterdam, the Netherlands Cover design: Anne Bonthuis Druk: GVO | Ponsen & Looijen, Ede © Marion Brands, 2013 All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system or transmitted in any form or means without permission of the author, or, when appropriate, of the publishers of the publications. proefschrift.indb 2 27-8-2013 16:01:53 Enzyme-replacement Therapy in Mucopolysaccharidoses with a Specific Focus on MPS VI Enzym vervangende therapie in de mucopolysaccharidosen met specifieke aandacht voor MPS VI Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. H.G. Schmidt en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op dinsdag 15 oktober 2013 om 15:30 uur. Marion Maria Mathilde Geertruida Brands geboren te Heerlen proefschrift.indb 3 27-8-2013 16:01:53 Promotiecommissie Promotor: Prof.dr. A.T.
    [Show full text]
  • Megalencephaly and Macrocephaly
    277 Megalencephaly and Macrocephaly KellenD.Winden,MD,PhD1 Christopher J. Yuskaitis, MD, PhD1 Annapurna Poduri, MD, MPH2 1 Department of Neurology, Boston Children’s Hospital, Boston, Address for correspondence Annapurna Poduri, Epilepsy Genetics Massachusetts Program, Division of Epilepsy and Clinical Electrophysiology, 2 Epilepsy Genetics Program, Division of Epilepsy and Clinical Department of Neurology, Fegan 9, Boston Children’s Hospital, 300 Electrophysiology, Department of Neurology, Boston Children’s Longwood Avenue, Boston, MA 02115 Hospital, Boston, Massachusetts (e-mail: [email protected]). Semin Neurol 2015;35:277–287. Abstract Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and Keywords behavioral problems; specific disorders have associations with overgrowth or abnor- ► megalencephaly malities in other tissues. The molecular underpinnings of many of these disorders are ► hemimegalencephaly now understood, providing insight into how dysregulation of critical pathways leads to ►
    [Show full text]
  • MPS Research Highlights at Worldsymposium 2020
    CME/CE MPS Research Highlights at WORLDSymposium 2020 Barbara Burton, MD Ann & Robert H. Lurie Children’s Hospital of Chicago Chicago, IL Mucopolysaccharidoses • A group of lysosomal storage disorders • Genetic disorders in which mutations in different genes leads to abnormal accumulation of complex carbohydrates • Mucopolysaccharies or glycosaminoglycans • Numerous MPSs and each MPS may also have numerous subtypes • Often have striking skeletal features. May or may not have behavioral/cognitive difficulties NIH Rare Disease Database: MPS. 2019. https://rarediseases.info.nih.gov/diseases/7065/mucopolysaccharidosis Mucopolysaccharidoses MPS Type Common Name Gene Mutation Treatment MPS I Hurler syndrome IDUA HSCT, ERT, symptomatic/supportive MPS II Hunter syndrome IDS ERT, symptomatic/supportive MPS III Sanfilippo syndrome GNS, HGSNAT, Symptomatic/supportive NAGLU, SGSH MPS IV Morquio syndrome GALNS, GLB1 ERT, symptomatic/supportive MPS VI Maroteaux-Lamy syndrome ARSB ERT, symptomatic/supportive MPS VII Sly syndrome GUSB ERT, symptomatic/supportive NIH Rare Disease Database: MPS. 2019. https://rarediseases.info.nih.gov/diseases/7065/mucopolysaccharidosis WORLDSymposium • Annual conference focused on lysosomal storage disorders • MPSs, Fabry disease, Gaucher disease, etc • 4 day event every February • Day 1 & 2 – Basic research • Day 2 & 3 – Translational research • Day 3 & 4 – Clinical research • 446 poster presentation • 84 oral presentations MPS and Reproduction • Peter, Cagle; Atlanta, GA • Can women with MPS have normal menstruation and pregnancy? • Case-control study with 33 MPS women [MPS I (10), MPS IV (17), MPS VI (5), and MPS VII (1)] • Menstrual questionnaire • MPS women scored abnormally higher but difference not statistically significant • Pregnancy • 6 women with MPS had successful pregnancy. • Complications included spotting, gestational diabetes, prolonged labor, and excessive blood loss Peter, Cagle.
    [Show full text]
  • Orphanet Report Series Rare Diseases Collection
    Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic
    [Show full text]