Poster Session Abstracts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont. -
Epidemiology of Mucopolysaccharidoses Update
diagnostics Review Epidemiology of Mucopolysaccharidoses Update Betul Celik 1,2 , Saori C. Tomatsu 2 , Shunji Tomatsu 1 and Shaukat A. Khan 1,* 1 Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; [email protected] (B.C.); [email protected] (S.T.) 2 Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel.: +302-298-7335; Fax: +302-651-6888 Abstract: Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a lysosomal enzyme deficiency or malfunction, which leads to the accumulation of glycosaminoglycans in tissues and organs. If not treated at an early stage, patients have various health problems, affecting their quality of life and life-span. Two therapeutic options for MPS are widely used in practice: enzyme replacement therapy and hematopoietic stem cell transplantation. However, early diagnosis of MPS is crucial, as treatment may be too late to reverse or ameliorate the disease progress. It has been noted that the prevalence of MPS and each subtype varies based on geographic regions and/or ethnic background. Each type of MPS is caused by a wide range of the mutational spectrum, mainly missense mutations. Some mutations were derived from the common founder effect. In the previous study, Khan et al. 2018 have reported the epidemiology of MPS from 22 countries and 16 regions. In this study, we aimed to update the prevalence of MPS across the world. We have collected and investigated 189 publications related to the prevalence of MPS via PubMed as of December 2020. In total, data from 33 countries and 23 regions were compiled and analyzed. -
List of Approved Ndas for Biological Products That Were Deemed to Be Blas on March 23, 2020
List of Approved NDAs for Biological Products That Were Deemed to be BLAs on March 23, 2020 On March 23, 2020, an approved application for a biological product under section 505 of the Federal Food, Drug, and Cosmetic Act (FD&C Act) was deemed to be a license for the biological product under section 351 of the Public Health Service Act (PHS Act) (see section 7002(e)(4)(A) of the Biologics Price Competition and Innovation Act of 2009). To enhance transparency and facilitate planning for the March 23, 2020, transition date, FDA compiled a preliminary list of approved applications for biological products under the FD&C Act that were listed in FDA’s Approved Drug Products with Therapeutic Equivalence Evaluations (the Orange Book) and that would be affected by this transition provision. FDA posted this list on the FDA website in December 2018, and periodically updated this list before the March 23, 2020, transition date. The September 2019 update to this preliminary list added certain administratively closed applications related to approved applications for biological products that were on the December 2018 version of this list. The January 2020 update to the preliminary list reflected a change to the definition of “biological product” made by the Further Consolidated Appropriations Act, 2020, which was enacted on December 20, 2019. Section 605 of this Act further amended the definition of a “biological product” in section 351(i) of the PHS Act to remove the parenthetical “(except any chemically synthesized polypeptide)” from the statutory category of “protein.” FDA has provided below a list of each approved application for a biological product under the FD&C Act that was deemed to be a license (i.e., an approved biologics license application (BLA)) for the biological product on March 23, 2020. -
DRUGS REQUIRING PRIOR AUTHORIZATION in the MEDICAL BENEFIT Page 1
Effective Date: 08/01/2021 DRUGS REQUIRING PRIOR AUTHORIZATION IN THE MEDICAL BENEFIT Page 1 Therapeutic Category Drug Class Trade Name Generic Name HCPCS Procedure Code HCPCS Procedure Code Description Anti-infectives Antiretrovirals, HIV CABENUVA cabotegravir-rilpivirine C9077 Injection, cabotegravir and rilpivirine, 2mg/3mg Antithrombotic Agents von Willebrand Factor-Directed Antibody CABLIVI caplacizumab-yhdp C9047 Injection, caplacizumab-yhdp, 1 mg Cardiology Antilipemic EVKEEZA evinacumab-dgnb C9079 Injection, evinacumab-dgnb, 5 mg Cardiology Hemostatic Agent BERINERT c1 esterase J0597 Injection, C1 esterase inhibitor (human), Berinert, 10 units Cardiology Hemostatic Agent CINRYZE c1 esterase J0598 Injection, C1 esterase inhibitor (human), Cinryze, 10 units Cardiology Hemostatic Agent FIRAZYR icatibant J1744 Injection, icatibant, 1 mg Cardiology Hemostatic Agent HAEGARDA c1 esterase J0599 Injection, C1 esterase inhibitor (human), (Haegarda), 10 units Cardiology Hemostatic Agent ICATIBANT (generic) icatibant J1744 Injection, icatibant, 1 mg Cardiology Hemostatic Agent KALBITOR ecallantide J1290 Injection, ecallantide, 1 mg Cardiology Hemostatic Agent RUCONEST c1 esterase J0596 Injection, C1 esterase inhibitor (recombinant), Ruconest, 10 units Injection, lanadelumab-flyo, 1 mg (code may be used for Medicare when drug administered under Cardiology Hemostatic Agent TAKHZYRO lanadelumab-flyo J0593 direct supervision of a physician, not for use when drug is self-administered) Cardiology Pulmonary Arterial Hypertension EPOPROSTENOL (generic) -
AHFS Pharmacologic-Therapeutic Classification System
AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective -
Uptake of -(L)-Iduronidase Produced by Retrovirally Transduced
Gene Therapy (1997) 4, 63–75 1997 Stockton Press All rights reserved 0969-7128/97 $12.00 Uptake of a-(L)-iduronidase produced by retrovirally transduced fibroblasts into neuronal and glial cells in vitro K Stewart1, OA Brown1, AE Morelli1, LJ Fairbairn2, LS Lashford2,3, A Cooper4, CE Hatton4, TM Dexter2, MG Castro1 and PR Lowenstein1 1Molecular Medicine Unit, Department of Medicine, University of Manchester School of Medicine; 2CRC Department of Experimental Haematology, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester; 3Academic Unit of Pediatric Oncology, Christie Hospital NHS Trust, Manchester; and 4Willink Biochemical Genetics Unit, Royal Manchester Children’s Hospital, Manchester, UK The uptake of recombinant a-(L)-iduronidase into glial and higher in actively dividing or immature brain cells. Conse- neuronal cells, produced by retrovirally transduced NIH3T3 quently, (1) neuronal metabolism ought to be capable of fibroblasts, was studied. We demonstrate that: (1) neuronal cross correction by enzyme provided by genetically engine- and glial cells take up a-(L)-iduronidase released into the ered and transplanted cells provided by bone marrow medium by retrovirally transduced fibroblasts expressing transplantation (BMT); (2) that BMT could have a more high levels of a-(L)-iduronidase; (2) both glial and neuronal beneficial effect on neurological function if performed as cells express the cation independent mannose-6-phos- early as possible; and (3) given that the uptake mechanism phate receptor responsible for lysosomal enzyme uptake; of glial cells has a higher capacity, it might be easier to and (3) uptake of the lysosomal enzyme can be blocked target diseases like the leukodystrophies in which lysoso- by excess free mannose-6-phosphate, but not glucose-6- mal enzymes are needed in glial cells, compared to dis- phosphate. -
Functional Characterization of Carbohydrate-Active Enzymes from Marine Bacteria
Functional characterization of carbohydrate-active enzymes from marine bacteria I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Greifswald vorgelegt von Marcus Bäumgen Greifswald, 28.02.2020 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Uwe T. Bornscheuer 2. Gutachter: Prof. Dr. Harry Brumer Tag der Promotion: 24.06.2020 II III Wissenschaft ist das Werkzeug, welches es uns ermöglicht, das große Puzzel der Natur und des Lebens zu lösen. IV Auch wenn wir den Weg des Wissens und der Weisheit niemals bis zum Ende beschreiten können, so ist doch jeder Schritt, den wir tun, ein Schritt in eine bessere Welt. V Content Abbreviations ..................................................................................................................... IX 1. Introduction ..................................................................................................................... 1 1.1 The marine carbon cycle .............................................................................................. 1 1.1.1 Algal blooms .......................................................................................................... 1 1.1.2 The marine carbohydrates ulvan and xylan ........................................................... 2 1.1.3 Marine polysaccharide utilization ........................................................................... 4 1.2 Carbohydrate-active enzymes -
United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528. -
Alpha-L-Iduronidase Transduced Mesenchymal Stem Cells As A
ALPHA-L-IDURONIDASE TRANSDUCED MESENCHYMAL STEM CELLS AS A THERAPY FOR THE TREATMENT OF CNS DEGENERATION IN MUCOPOLYSACCHARIDOSIS TYPE I MICE Matilda Jackson BMSc, BSc (Hons) Matrix Biology Unit SA Pathology Thesis submitted for the degree of Doctor of Philosophy in Discipline of Genetics School of Molecular and Biomedical Sciences Faculty of Science The University of Adelaide Table of contents Abstract........................................................................................................... vii Declaration....................................................................................................... ix Acknowledgements ........................................................................................... x Abbreviations .................................................................................................. xi Chapter One: Introduction .............................................................................. 1 1.0 Overview .................................................................................................................... 2 1.1 The Mucopolysaccharidoses .................................................................................... 3 1.1.1 Mucopolysaccharidoses type I......................................................................................... 5 1.1.2 Central Nervous System (CNS) pathology ...................................................................... 7 1.1.3 Bone pathology .............................................................................................................. -
Enzyme Replacement Therapy Srx-0019 Policy Type ☒ Medical ☐ Administrative ☐ Payment
MEDICAL POLICY STATEMENT Original Effective Date Next Annual Review Date Last Review / Revision Date 06/15/2011 03/15/2017 10/04/2016 Policy Name Policy Number Enzyme Replacement Therapy SRx-0019 Policy Type ☒ Medical ☐ Administrative ☐ Payment Medical Policy Statements prepared by CSMG Co. and its affiliates (including CareSource) are derived from literature based on and supported by clinical guidelines, nationally recognized utilization and technology assessment guidelines, other medical management industry standards, and published MCO clinical policy guidelines. Medically necessary services include, but are not limited to, those health care services or supplies that are proper and necessary for the diagnosis or treatment of disease, illness, or injury and without which the patient can be expected to suffer prolonged, increased or new morbidity, impairment of function, dysfunction of a body organ or part, or significant pain and discomfort. These services meet the standards of good medical practice in the local area, are the lowest cost alternative, and are not provided mainly for the convenience of the member or provider. Medically necessary services also include those services defined in any Evidence of Coverage documents, Medical Policy Statements, Provider Manuals, Member Handbooks, and/or other policies and procedures. Medical Policy Statements prepared by CSMG Co. and its affiliates (including CareSource) do not ensure an authorization or payment of services. Please refer to the plan contract (often referred to as the Evidence of Coverage) for the service(s) referenced in the Medical Policy Statement. If there is a conflict between the Medical Policy Statement and the plan contract (i.e., Evidence of Coverage), then the plan contract (i.e., Evidence of Coverage) will be the controlling document used to make the determination. -
Elelyso™ (Taliglucerase Alfa)
Elelyso™ (taliglucerase alfa) (Intravenous) Document Number: IC-0105 Last Review Date: 07/01/2020 Date of Origin: 03/07/2013 Dates Reviewed: 12/2013, 02/2014, 09/2014, 07/2015, 07/2016, 08/2016, 08/2017, 07/2018, 07/2019, 07/2020 I. Length of Authorization Coverage will be for 12 months and may be renewed. II. Dosing Limits A. Quantity Limit (max daily dose) [NDC unit]: • Elelyso 200 unit powder for injection: 35 vials every 14 days B. Max Units (per dose and over time) [HCPCS Unit]: • 700 billable units every 14 days 1,9,10,11,12,13 III. Initial Approval Criteria Coverage is provided in the following conditions: • Patient at least 4 years of age; AND Universal Criteria • Must be used as a single agent; AND Type 1 Gaucher’s Disease † Ф • Patient has a documented diagnosis of Type 1 Gaucher Disease as confirmed by a beta- glucosidase leukocyte (BGL) test with significantly reduced or absent glucocerebrosidase enzyme activity; AND • Adults only (i.e., patients at least 18 years or older): Patient’s disease results in one or more of the following: − Anemia [i.e., hemoglobin less than or equal to 11 g/dL (women) or 12 g/dL (men) ] not attributed to iron, folic acid or vitamin B12 deficiency; OR − Moderate to severe hepatomegaly (liver size 1.25 or more times normal) or splenomegaly (spleen size 5 or more times normal); OR Proprietary & Confidential © 2020 Magellan Health, Inc. − Skeletal disease (e.g. lesions, remodeling defects and/or deformity of long bones, osteopenia/osteoporosis, etc.); OR − Symptomatic disease(e.g. -
Plant-Based COVID-19 Vaccines: Current Status, Design, and Development Strategies of Candidate Vaccines
Review Plant-Based COVID-19 Vaccines: Current Status, Design, and Development Strategies of Candidate Vaccines Puna Maya Maharjan 1 and Sunghwa Choe 2,3,* 1 G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea; punamaya.maharjan@gflas.com 2 G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea 3 School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea * Correspondence: [email protected] Abstract: The prevalence of the coronavirus disease 2019 (COVID-19) pandemic in its second year has led to massive global human and economic losses. The high transmission rate and the emergence of diverse SARS-CoV-2 variants demand rapid and effective approaches to preventing the spread, diagnosing on time, and treating affected people. Several COVID-19 vaccines are being developed using different production systems, including plants, which promises the production of cheap, safe, stable, and effective vaccines. The potential of a plant-based system for rapid production at a commercial scale and for a quick response to an infectious disease outbreak has been demonstrated by the marketing of carrot-cell-produced taliglucerase alfa (Elelyso) for Gaucher disease and tobacco- produced monoclonal antibodies (ZMapp) for the 2014 Ebola outbreak. Currently, two plant-based COVID-19 vaccine candidates, coronavirus virus-like particle (CoVLP) and Kentucky Bioprocessing (KBP)-201, are in clinical trials, and many more are in the preclinical stage. Interim phase 2 clinical Citation: Maharjan, P.M.; Choe, S. trial results have revealed the high safety and efficacy of the CoVLP vaccine, with 10 times more Plant-Based COVID-19 Vaccines: neutralizing antibody responses compared to those present in a convalescent patient’s plasma.