Phagocytosis and MHC II Antigen Presentation by Human Γδ T Cells

Total Page:16

File Type:pdf, Size:1020Kb

Phagocytosis and MHC II Antigen Presentation by Human Γδ T Cells Phagocytosis and MHC II antigen presentation by human γδ T cells Luísa de Jesus Saraiva Molecular Immunology Unit UCL Institute of Child Health London A thesis submitted for the degree of Doctor of Philosophy August 2014 1 Declaration I, Luísa de Jesus Saraiva, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 1 Abstract γδ T cells are a rare subset of T cells present in human blood and lymphoid tissues. Functionally, they stand at the interface of the innate and the acquired branch of the immune system as they express somatically rearranged antigen receptors but they also share many characteristics with NK cells. One of those is the ability to express CD16. CD16 is a cell-surface receptor that binds the Fc portion of IgG. In the isoform found on tissue macrophages and NK cells it is coupled to an intracellular signalling domain that allows it to initiate cellular processes leading to the internalisation of IgG-coated particles or cytotoxicity against IgG-coated cells. Therefore, it has a role in the clearance of IgG-coated complexes and the destruction of infected or malignant cells. In this thesis, I show that a population of γδ T cells present in human blood from healthy donors express the CD16 receptor and implicate a role for this receptor in phagocytosis of IgG-coated bacteria and synthetic beads coated with recombinant influenza M1 protein. These cells were subsequently shown to activate influenza-specific T cells through MHC II presentation. Importantly, neither αβ T cells nor NK cells were capable of significant phagocytosis. In addition, once CD11c+ cells had been removed from the NK fraction, neither αβ T cells or NK cells were capable of MHC II antigen presentation of influenza M1 antigen. The CD16+ γδ T cells displayed a phenotype of effector memory and late effector memory T cells suggesting a role for these cells in patrolling the blood and rapidly migrating to sites of inflammation for a combination of rapid effector and antigen presentation function. 3 Acknowledgments First and foremost I would like to thank my supervisor Dr Kenth Gustafsson for taking me on as a student and for his endless enthusiasm and open-minded approach to science. This project would not have been possible without his patience and encouragement and many helpful intellectual discussions. I would also like to thank my co-supervisor Dr Siobhan Burns for taking me on first as a research assistant and then as a PhD student and for actively training me to become technically competent and providing guidance on the direction of research. I would also like to acknowledge the extensive contribution of Dr Conrad Vink as an editor throughout the re-drafting process, whose constructive criticism greatly improved the standard of this document. I would like to thank Dr Yin Wu whose intellectual contributions made this project possible in the first place. In addition, I would like to acknowledge Dr Ayad Eddaoudi for technical assistance with flow cytometry and cell sorting and Dr Bertrand Vernais for technical assistance with confocal microscopy, Julien Record and Dr Dale Moulding for helping me with the granulocyte isolation, staining and microscopy, and Dr Giorgia Santilli for helping me with the NBT assays. I am also thankful to Flávio Saraiva for writing a randomising software to score microscopy data, to Dr Marlene Carmo for helping me with the chromium release assays, and to Dr Holly Stephenson for training me in the gentamicin protection assay. A warm thank you to all the blood donors that contributed to this work and to the many members of MIU who make it a good place to work in. In particular, thank you to Dr João Metelo and João Nunes for patiently training me during the time I spend working with them and for their warm hospitality. Thanks to Aris whose 6 am thesis starts whilst doing army duty provided a standard no subsequent PhD student can hope to match. Thank you to Maria Manunta for enduring tango lessons whilst trying to ignore her foot needed medical attention. Thank you to Fran and Gavin for being the best desk neighbours. Thank you to Mus for his unshakable drive. Thank you to Sarah for her endless optimism and energy. Thank you to Ida for her encouragement and for showing us you can have it all. In addition, thank you to the rest of the MIU crowd in the upstairs offices for boozy Friday pub outings and over-ambitious cycling missions. 4 Thank you to the friends that keep me grounded and remind me of other times, scattered they may be around the world. A special thank you to Ana Luísa in Stockholm and Lina in Zurich. Thank you for your moral support, advice and laughter. Thank you also to Miguel, Catarina, Diana, Daniela, João Nascimento, Marta and Rita who liven up going back home. Thank you to my mum for being such an inspiration throughout her life’s struggles, and for completing her own PhD with three demanding children at her back. Thank you to my dad for his independent thinking and integrity and his selfless love and kindness. Thank you to my brother Flávio and my sister Inês for believing that there is no such thing as too much education! To Conrad, thank you for keeping me sane and hopeful when times were rough and for making every day brighter. 5 List of Figures Figure 4.1 – Detection of phagocytosis of opsonised green fluorescent E. coli by γδ T cells using confocal microscopy ................................................................................................ 74 Figure 4.2 – Distinguishing intracellular E. coli from surface bound E. coli by confocal microscopy z-stacks .................................................................................................................... 75 Figure 4.3 – Examples of confocal microscopy z-stacks where the distinction between intracellular E. coli and surface bound E. coli is ambiguous ................................................... 76 Figure 4.4 – Discrimination between intra and extracellular E. coli associated with γδ T cells using dual fluorescence flow cytometry .......................................................................... 79 Figure 4.5 – Establishment of live GFP-expressing E. coli cultures as an alternative to lyophilised fluorescein-labelled E. coli for the study of phagocytosis in γδ T cells ............. 82 Figure 4.6 – Comparing phagocytosis of lyophilised fluorescein-E. coli and live GFP-E. coli by confocal microscopy ........................................................................................................ 83 Figure 4.7 – Internalisation of opsonised live E. coli by γδ T cells is detected in a standard gentamicin protection assay ....................................................................................................... 86 Figure 4.8 – Comparative quantification of phagocytosis of highly purified leukocyte fractions using blind-scored confocal microscopy images .................................................... 90 Figure 4.9 – A population of CD3+ γδ TCR+ cells in whole blood can phagocytose opsonised GFP-expressing E. coli ............................................................................................. 94 Figure 4.10 – Characteristics of phagocytosing and non-phagocytosing CD3+ γδ TCR+ cells in the whole blood phagocytosis assay ............................................................................ 97 Figure 4.11 – Phagocytosing CD3+ γδ TCR+ cells in whole blood produce reactive oxygen species .............................................................................................................................. 99 Figure 4.12 - Human blood γδ T cells include cells with unusual dendritic-like extensions ...................................................................................................................................................... 100 Figure 4.13 – Phagocytosing CD3+ γδ TCR+ cells in whole blood have unusual morphology ................................................................................................................................ 103 Figure 4.14 – Purity assessment of FACS sorted γδ T cells by flow cytometry ............... 107 Figure 4.15 – Purity of non-phagocytic and phagocytic FACS sorted γδ T cells ............. 108 Figure 4.16 – The CD3/ γδ TCR complex is not expressed in human neutrophils or eosinophils .................................................................................................................................. 112 Figure 4.17 – The γδ TCR is not expressed by polymorphonucleated cells ..................... 113 Figure 5.1 – Class II presentation of M1 influenza antigen by γδ T cells .......................... 125 Figure 5.2 – γδ T cells present significantly more M1 influenza antigen than other lymphocytes ................................................................................................................................ 128 Figure 5.3 – Antigen presentation was seen in some wells of NK cells directly isolated with CD56 beads but not when NK cells were isolated by depletion of non-NK cell types ...................................................................................................................................................... 132 6 Figure 5.4 – Comparison of antigen presentation by freshly isolated γδ T cells and γδ T cells which have undergone γδ T APC maturation .............................................................. 135 Figure 5.5 – CD16, class II antigen presentation
Recommended publications
  • Phagocytosis References
    9025 Technology Dr. Fishers, IN 46038 • www.bangslabs.com • [email protected] • 800.387.0672 PHAGOCYTOSIS REFERENCES GENERAL BEAD SELECTION & PHAGOCYTOSIS RATES Thiele L, Diederichs JE, Reszka R, Merkle HP, Walter E. (2003) Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells. Biomaterials; 24(8):1409-18. (1µm Polybead® and Fluoresbrite® Carboxylate microspheres) Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers-- liposomes and microspheres--on the phagocytosis by macrophages. J Controlled Release; 79:29-40. Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E. (2001) Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Controlled Release; 76:59-71. Koval M, Preiter K, Adles C, Stahl PD, Steinberg TH. (1998) Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res; 242(1):265-73. (0.2-0.3µm Polybead® microspheres; trypan blue quenching) Tabata Y, Ikada Y. (1988) Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials; 9(4):356-62. MONOCYTES Gu BJ, Duce JA, Valova VA, Wong B, Bush AI, Petrou S, Wiley JS. (2012) P2X7 receptor-mediated scavenger activity of mononuclear phagocytes toward non-opsonized particles and apoptotic cells is inhibited by serum glycoproteins but remains active in cerebrospinal fluid.Journal of Biological Chemistry. May 18;287:17318-30. (1µm Fluoresbrite® YG microspheres) Dumrese C, Slomianka L, Ziegler U, Choi SS, Kalia A, Fulurija A, Lu W, Berg DE, Benghezal M, Marshall B, Mittl PR.
    [Show full text]
  • Cd47-Sirpα Interaction and IL-10 Constrain Inflammation-Induced Macrophage Phagocytosis of Healthy Self-Cells
    Cd47-Sirpα interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells Zhen Biana,b, Lei Shia, Ya-Lan Guoa, Zhiyuan Lva, Cong Tanga, Shuo Niua, Alexandra Tremblaya, Mahathi Venkataramania, Courtney Culpeppera, Limin Lib, Zhen Zhoub, Ahmed Mansoura, Yongliang Zhangc, Andrew Gewirtzd, Koby Kiddera,e, Ke Zenb, and Yuan Liua,d,1 aProgram of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302; bState Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China; cDepartment of Microbiology and Immunology, Yong Loo Lin School of Medicine, Life Science Institute (LSI) Immunology Programme, National University of Singapore, Singapore 117456; dCenter for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303; and eDepartment of Cell Biology, Rutgers University, New Brunswick, NJ 08901 Edited by Jason G. Cyster, University of California, San Francisco, CA, and approved July 11, 2016 (received for review October 28, 2015) − − Rapid clearance of adoptively transferred Cd47-null (Cd47 / ) cells in The CD47-SIRPα mechanism was first reported by Oldenborg congeneic WT mice suggests a critical self-recognition mechanism, et al. (1), who had demonstrated in red blood cell (RBC) in which CD47 is the ubiquitous marker of self, and its interaction transfusion experiments that WT mice rapidly eliminate syngeneic − with macrophage signal regulatory protein α (SIRPα) triggers inhib- Cd47-null (Cd47 ) RBCs through erythrophagocytosis in the itory signaling through SIRPα cytoplasmic immunoreceptor tyrosine- spleen and that the lack of tyrosine phosphorylation in SIRPα based inhibition motifs and tyrosine phosphatase SHP-1/2.
    [Show full text]
  • CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor
    Published March 4, 2016, doi:10.4049/jimmunol.1502198 The Journal of Immunology CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcg Receptor– and Complement Receptor 3–Dependent Mechanisms Alaa Amash,*,† Lin Wang,‡ Yawen Wang,‡ Varsha Bhakta,x Gregory D. Fairn,† Ming Hou,‡ Jun Peng,‡ William P. Sheffield,*,x and Alan H. Lazarus*,†,{ Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoim- mune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcg receptors (FcgRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcgR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcgR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcgR-mediated phagocytosis of RBCs.
    [Show full text]
  • Initial Events During Phagocytosis by Macrophages Viewed from Outside and Inside the Cell: Membrane-Particle Interactions and Clathrin
    Initial Events during Phagocytosis by Macrophages Viewed from Outside and Inside the Cell: Membrane-Particle Interactions and Clathrin JUDITH AGGELER and ZENA WERB Department of Anatomy and Laboratory of Radiobiology and Environmental Health, University of California, San Francisco, California 94143 ABSTRACT The initial events during phagocytosis of latex beads by mouse peritoneal=; macro- phages were visualized by high-resolution electron microscopy of platinum replicas of freeze- dried cells and by conventional thin-section electron microscopy of macrophages postfixed with I% tannic acid. On the external surface of phagocytosing macrophages, all stages of particle uptake were seen, from early attachment to complete engulfment. Wherever the plasma membrane approached the bead surface, there was a 20-nm-wide gap bridged by narrow strands of material 12.4 nm in diameter. These strands were also seen in thin sections and in replicas of critical-point-dried and freeze-fractured macrophages. When cells were broken open and the plasma membrane was viewed from the inside, many nascent phagosomes had relatively smooth cytoplasmic surfaces with few associated cytoskeletal filaments. However, up to one-half of the phagosomes that were still close to the cell surface after a short phagocytic pulse (2-5 min) had large flat or spherical areas of clathrin basketwork on their membranes, and both smooth and clathrin-coated vesicles were seen fusing with or budding off from them. Clathrin-coated pits and vesicles were also abundant elsewhere on the plasma membranes of phagocytosing and control macrophages, but large flat clathrin patches similar to those on nascent phagosomes were observed only on the attached basal plasma membrane surfaces.
    [Show full text]
  • Mediate Endocytosis and Phagocytosis
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 5030-5034, June 1992 Immunology Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: Identification of the critical cytoplasmic domains (CD23/endocytosis/phagocytosis) AKIRA YOKOTA*, KAzUNORI YUKAWA*, AKITSUGU YAMAMOTOt, KENJI SUGIYAMA*, MASAKI SUEMURAt, YUTAKA TASHIROt, TADAMITSU KISHIMOTO*t, AND HITOSHI KIKUTANI* *Institute for Molecular and Cellular Biology, Osaka University, 1-3, Yamada-oka, Suita, Osaka 565, Japan; *Department of Medicine III, Osaka University Medical School, 1-1-50, Fukushima, Fukushima-ku, Osaka 553, Japan; and tDepartment of Physiology, Kansai Medical University, Moriguchi-shi, Osaka 570, Japan Contributed by Tadamitsu Kishimoto, February 21, 1992 ABSTRACT We have previously identified two species of FceRIIb may be involved in B-cell function and IgE-mediated the low-affinity human Fc receptor for IgE, FceRIIa and immunity, respectively. FceRIIb, which differ only in a short stretch of amino acids at In this paper, we have attempted to elucidate the molecular the N-terminal cytoplasmic end. Their differential expressions basis ofthe functional difference between these two forms of on B cells and monocytes suggest that FceRlla and FceRIIb are receptor molecules by using stable transfectants expressing involved in B-cell function and IgE-mediated immunity, re- either human wild-type or mutated FceRII and have demon- spectively. Here we show that FceRII-mediated endocytosis is strated that endocytosis is mediated only through FceRIIa observed only in FceRlia-expressing cells, whereas IgE- and that phagocytosis is mediated only through FceRIIb. dependent phagocytosis isobserved only in FceRIEb-expressing Furthermore, the minimum amino acid residues necessary cells, demonstrating the functional difference between FceRIIa for endocytosis and phagocytosis have been determined.
    [Show full text]
  • The Immune System Phagocytosis Antibody Function
    IMMUNE SYSTEM By the end of the lesson you should be able to Identify the 1st Line of Defense against a pathogen Identify the 2nd Line of Defense against a pathogen. Outline the stages in phagocytosis. Describe how antibodies work and how they are specific. IMMUNITY the body’s ability to resist disease can be natural or acquired Natural immunity is something you are born with Acquired immunity is something you develop over a lifetime TYPES OF IMMUNITY NATURAL ACQUIRED Includes Includes Intact skin Antibodies made Intact mucus after sickness membranes Anti-venom Tears Vaccines Saliva Stomach acid FIRST LINES OF DEFENSE saliva tears antibacterial antibacterial enzymes enzymes mucus linings skin traps dirt and prevents microbes entry stomach acid “good” gut low pH kills bacteria out harmful compete bad microbes SECOND LINES OF DEFENSE Inflammation Redness Heat Swelling Pain Involves white blood cells Non-specific response - invading pathogens are targeted by macrophages Specific response - chemicals called antibodies that target specific pathogens PHAGOCYTES PHAGOCYTES Macrophages and Neutrophils Provide a non-specific response to disease PHAGOCYTOSIS Stages in phagocytosis 1. Phagocyte detects chemicals released by a pathogen (e.g. bacteria). 2. Phagocyte travels to location of pathogen 3. Phagocyte attaches to the pathogen and surrounds it with its cell membrane. 4. Lysosomes (digest things) inside the phagocyte release their contents to break apart the pathogen and digest it. During infection, hundreds of phagocytes are needed. Pus is dead bacteria and phagocytes PUS An accumulation of : - dead phagocytes destroyed bacteria dead cells Pus shows your immune system is working. LYMPHOCYTE LYMPHOCYTES Provide a specific immune response to infectious diseases.
    [Show full text]
  • On Regulation of Phagosome Maturation and Antigen Presentation
    PERSPECTIVE On regulation of phagosome maturation and antigen presentation J Magarian Blander1 & Ruslan Medzhitov2 Phagocytosis has essential functions in immunity. Here we keeping’or scavenging function and a function in host defense against highlight the presence of a subcellular level of self–non-self infection6.Although there are dozens of different types of tissue-resi- discrimination in dendritic cells that operates at the level dent macrophages7,as far as is known at present the scavenging and of individual phagosomes. We discuss how engagement of host defense functions are not performed by specialized cell lineages: Toll-like receptor signaling controls distinct programs of the same macrophage, in other words, can carry out both functions. http://www.nature.com/natureimmunology phagosome maturation. An inducible mode of phagosome The scavenging function is essential for tissue homeostasis of com- maturation triggered by these receptors ensures the plex metazoans and involves removal of apoptotic cells, components selection of microbial antigens for presentation by major of the extracellular matrix and other by-products of metazoan physi- histocompatibility class II molecules during the simultaneous ology.Apoptotic cell recognition is mediated through the detection of phagocytosis of self and non-self. a number of molecules that are normally absent on live and healthy cells8.These molecules include surface expression of calreticulin and Uptake of external materials is an essential process for all eukaryotic exposure of phosphatidylserine on the outer leaflet of the plasma cells.Cells internalize nutrients and growth factors for their intrinsic membrane, as well as the expression of amino sugars and lysophos- needs, and specialized cell types also remove unwanted or excessive pholipids, which are recognized by various types of collectins, scav- materials from the circulation or tissue fluids, thus contributing to enger receptors, integrins and bridging molecules that link these Nature Publishing Group Group Nature Publishing tissue homeostasis.
    [Show full text]
  • Endocytosis: the Nanoparticle and Submicron Nanocompounds Gateway Into the Cell
    pharmaceutics Review Endocytosis: The Nanoparticle and Submicron Nanocompounds Gateway into the Cell Darío Manzanares 1,2 and Valentín Ceña 1,2,* 1 Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; [email protected] 2 CIBERNED, Instituto de Salud Carlos III, 28031 Madrid, Spain * Correspondence: [email protected] Received: 23 March 2020; Accepted: 15 April 2020; Published: 17 April 2020 Abstract: Nanoparticles (NPs) and submicron particles are increasingly used as carriers for delivering therapeutic compounds to cells. Their entry into the cell represents the initial step in this delivery process, being most of the nanoparticles taken up by endocytosis, although other mechanisms can contribute to the uptake. To increase the delivery efficiency of therapeutic compounds by NPs and submicron particles is very relevant to understand the mechanisms involved in the uptake process. This review covers the proposed pathways involved in the cellular uptake of different NPs and submicron particles types as well as the role that some of the physicochemical nanoparticle characteristics play in the uptake pathway preferentially used by the nanoparticles to gain access and deliver their cargo inside the cell. Keywords: nanoparticles; endocytosis; clathrin; caveolin; macropinocytosis 1. Introduction Nanomedicine has become one of the most rapidly growing areas of research in the biomedical field during the last years. Nanoparticles (NPs) and submicron particles (named both from this point as NPs to abbreviate) are defined as materials with nanometric sizes (1–100 and 100–1000 nm, respectively) that interact with biological systems in an unusual way because of their high surface to volume ratio. This property, combined with the possibility of modifying their peripheral chemical groups to achieve multitasking properties, provides NPs compounds with a very high potential for diagnostic and therapeutic applications in nanomedicine.
    [Show full text]
  • Innate Immunity
    Know Differences and Provide Examples Chapter 3 * * Innate Immunity Skin and Epithelial Barriers * Antimicrobial peptide – psoriasin -Activity against Gram (-) E. coli Connection Between Innate and Adaptive Immunity 1 1 INFLAMMATION * PRRs – Pattern 2 Recognition * Receptors on 0 5 – Tissue Repair 3 HOST CELLS 4 PAMPs – 5 Pathogen- Associated Activation Molecular 6 Patterns on MICROBES Inflammation 4 Steps in Cell Recruitment from Blood Vessels Tissue damage Acute • 1) Release of Vasoactive and chemotactic Mediators histamine, serotonin, etc. • 2) Action on Blood Vessels ↑ cell adhesion molecules (CAMs) • 3) Vasodilation : ↑diameter of capillaries, ↑blood flow • 4) Increased Vascular Permeability : ↑ leakiness from blood vessels ↑ recruitment of cells and fluid edema • 5) Extravasation of Phagocytes – recruitment of leukocytes Chemotaxis (chemokines; C3a/C5a, N-formyl peptides) • 6) Phagocyte activation – chemokine and cytokine production CAMs – cell adhesion molecules • 6) Tissue Repair – fibrin (clotting) and fibroblasts Soluble Molecules and Membrane- Associated Receptors • 1) Antimicrobial Peptides – defensins, interferons Blood vessel – Defensins – α-Defensins, β-Defensins 2 4 5 endothelial cells • Cationic (+) peptides (29-35 aa) • Antibacterial and anti-fungal 3 • Disrupt microbial membranes and synthesis of RNA, DNA, and proteins • Produced among others by neutrophils and epithelial 1 1 1 cells ( paneth cells ) 0 – Interferons (Type I) -IFN-α and IFN-β Inflammatory • Block viral replication (RNA viruses) Mediators 2 Soluble
    [Show full text]
  • Endocytosis, Phagocytosis, and Innate Immune Responses: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2010-07-13 Endocytosis, Phagocytosis, and Innate Immune Responses: A Dissertation Christine A. St. Pierre University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Cells Commons, Environmental Public Health Commons, Hemic and Immune Systems Commons, Immunology and Infectious Disease Commons, Investigative Techniques Commons, Nucleic Acids, Nucleotides, and Nucleosides Commons, Pharmaceutical Preparations Commons, and the Therapeutics Commons Repository Citation St. Pierre CA. (2010). Endocytosis, Phagocytosis, and Innate Immune Responses: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/0zzv-kd21. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/488 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. ENDOCYTOSIS, PHAGOCYTOSIS, AND INNATE IMMUNE RESPONSES A Dissertation Presented By Christine A. St. Pierre submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY July 13, 2010 Biomedical Sciences
    [Show full text]
  • Report Phagosome Extrusion and Host-Cell Survival After Cryptococcus Neoformans Phagocytosis by Macrophages
    Current Biology 16, 2161–2165, November 7, 2006 ª2006 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2006.09.061 Report Phagosome Extrusion and Host-Cell Survival after Cryptococcus neoformans Phagocytosis by Macrophages Mauricio Alvarez1 and Arturo Casadevall1,* extrusion was observed as early as 2 hr after macro- 1 Department of Microbiology and Immunology phage infection, and the likelihood of extrusion was tem- Albert Einstein College of Medicine porally dependent on the initial ratio of pathogens to Bronx, New York, 10461 host cells, with higher ratios resulting in earlier phagoso- mal extrusion events (data not shown). Phagosomal ex- trusion was independent of the activated state of macro- Summary phages because nonactivated macrophages equally extruded Cn cells (Figure 2). Additionally, fusion of Cryptococcus neoformans (Cn) is an encapsulated Cn-containing phagosomes led to the formation of a yeast that is a facultative intracellular pathogen and giant compartment that appeared to be a prerequisite a frequent cause of human disease. The interaction for the complete extrusion of all Cn cells (Figure 1 and of Cn with alveolar macrophages is critical for contain- Figure S3). ing the infection [1, 2], but Cn can also replicate intra- Phagosomal extrusion was not observed with macro- cellularly and lyse macrophages [3–5]. Cn has a unique phages that ingested polystyrene beads (data not intracellular pathogenic strategy that involves cyto- shown) or acapsular Cn (cap67), but on rare occasions, plasmic accumulation of polysaccharide-containing incomplete extrusion of the latter was observed, where vesicles and intracellular replication leading to the only small numbers of Cn escaped the macrophages, formation of spacious phagosomes in which multiple with most remaining intracellular.
    [Show full text]
  • Mechanisms Involved in Macrophage Phagocytosis of Apoptotic Cells
    Mechanisms involved in macrophage phagocytosis of apoptotic cells Anna Nilsson Department of Integrative Medical Biology Section for Histology and Cell Biology Umeå University, Umeå, Sweden 2009 Cover illustration: Confocal microscopic image of murine resident peritoneal macrophages, stained for F-actin (green), CMFDA labeled apoptotic thymocytes (pink), and nuclear DAPI staining (blue). © Anna Nilsson 2009 Umeå University Medical Dissertations New Series No. 1307 ISSN 0346-6612 ISBN 978-91-7264-890-6 Printed at Print & Media, Umeå University, Umeå, Sweden 2 To Stefan and Hjalmar 3 TABLE OF CONTENTS ABBREVIATIONS 6 ABSTRACT 7 LIST OF ORIGINAL PAPERS 8 INTRODUCTION 9 Apoptosis..................................................................................................................................................9 Elimination of apoptotic cells - an overview..........................................................................................10 “Find me signals”....................................................................................................................................11 “Eat me signals”......................................................................................................................................12 The calreticulin/LRP1 interaction...........................................................................................12 “Don’t eat me signals”............................................................................................................................14 The CD47/SIRPα
    [Show full text]