Physics and physical chemistry of micro- and nanotechnological

systems

Hans-Georg Braun Max Bergmann Center of Biomaterials

Schedule WS 2010/2011

Topic A: Preparation and characterization of micro- and nanoscaled systems Topic B: Surface design Topic C: Liquids on surfaces and in microfluidic systems Topic D: Physical and strcutural principles for self-assembly on Varioous scales Topic E: Biomimetic inspired materials

Micro- and Nanotechnology

Molecular Molecular Separation Recognition Bioanalytics Diagnostics

Bionano- technology Cell- / Micro- Biomimetic systems Chemistry

Nanoobjects

Layers Rods

z y x x y y 1-d 2-d 3-d

< 100 nm

History of nanotechnology

Ultrathin gold layers ( 100 nm) History of nanotechnology

Preparation of nanoobjects

Faraday sols – 1864 preparation History of nanotechnology

Preparation of nanoobjects

reduction (III) 0 HAu Cl4 Au Citrate Ascobic acid ~5 nm

Faraday sols – 1864 Nanoparticle preparation 20 nm History of nanotechnology

Analysis of nanoobjects

Scattered

Nanoparticles

Zsigmondy Ultramicroscope – 1900 Single observation History of nanotechnology

Faraday’s „solutions“ are no real solutions (Tyndal Faraday effect)

History of nanotechnology

Physical properties of nanoobjects

Einstein - Smoluchowski – 1905 Diffusion of History of nanotechnology

Physical properties of nanoobjects

Diffusion

Einstein - Smoluchowki – 1905 Diffusion of nanoparticles Example: Cell free gene expression on a chip

Buxboim and Bar-Ziv Small 3 (2007) 500 - 510

Micro- and nanostructures through self-assembly

Hui Zhang and Mary J. Wirth* Anal. Chem.2005, 77,1237-1242 Micro- and nanostructures through lithographic approaches

L. Jay Guo,*,† Xing Cheng,† and Chia-Fu Chou*,‡ NANO LETTERS 2004 Vol. 4, No. 1 69-73 Example: Microfluidic devices for protein crystallization

Li and Ismagilov Annual Review on Biophysics 39 (2010) 139-158

Example: Microfluidic devices for protein crystallization

Li and Ismagilov Annual Review on Biophysics 39 (2010) 139-158

Example: Open microfluid systems

Franke and Wixforth ChemPhysChem 9 (2008) 2140-2156

Example: In-situ encapsulation of cells in micrenvironement

Kaehr and Shear Lab on a chip 9 (2009) 2632 - 2637

2d structures 3d structures Lateral structures D

D

D D: lateral resolution D: lateral resolution H: height

Aspect ratio α

α = H/D

Top down technologies for micro-/nanostructure preparation

100 µm 10 µm 1 µm 100 nm 10 nm 1 nm

Sub-micrometer

Optical Lithography

Softlithography

Ebeam Lithography

AFM based Lithography

Top down technologies for micro-/nanostructure preparation

2d,3d Electronbeam & Optical, X-ray Lithography,

2d,3d Soft-Lithography

2d AFM based Lithography (dip pen, SNOM,..)

Ebeam and optical lithography

Substrate

Resist layer

Irradiation

Resist layer Positive resist Negative resist (becomes soluble upon irradiation) (becomes insoluble upon irradiation)

Pattern transfer

Film formation by spin coating

Substrate

Resist layer

Inhomogeneous thickness of resist layer and time evolution of layer thickness Film formation by spin coating

Process and materials parameter influencing film thickness

• Solution viscosity • Solid content • Angular speed • Spin Time

Wetting of (polymer) solutions on solid substrates

ω ~ 0 deg. Spreading

0 < ω < 90 deg. Wetting

ω > 90 deg. Non-wetting

Wetting and dewetting of thin polymer (liquid films) on solid substrates

Stability of thin films on surfaces

1) Stable film , 2) Unstable film 3) Metastable film Φ effective interface potential

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534 Stability of thin films on surfaces

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534 Stability of thin films on surfaces

h Polymerfilm d SiO Si h: thickness of polymer film d: Thickness of SiO layer

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534 Stability of thin films on surfaces on variable SiO interface

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534 Wetting and partial wetting on surfaces

G. Reiter et. Al. Langmuir 15 (1999) 2551 Optical lithography

Thick layer resist technology : High aspect ratios

Optical lithography

Thick layer resist technology : Thick layer resist systems (SU-8)

Optical lithography

Thick layer resist technology : High aspect ratios

I(d)

H

I(d) = I * exp- ε * d

Inhomogeneous irradiation of polymer due to strong optical absorption (H > 100 µm)

Optical lithography

Chemically amplified negative resist

T-BOC cleavage

Acid catalyst negative resist

Alkaline development

Optical lithography

Chemically amplified negative resist

T-BOC cleavage

Acid catalyst negative resist

Alkaline development

Optical lithography Light sources and structure resolution

Hg KrF ArF F2

365 248 193 157 nm nm nm nm

Optical lithography Lenses for KrF laser sources (248 nm)

Structure resolution <180 nm

Lense Material Calziumfluorid

Optical Transmission high above 170 nm

No birefringence

Ebeam lithography Penetration depth of electrons with different energies in different materials

Ebeam lithography Penetration depth of electrons with different energies

Ebeam lithography Resolution down to 8 nm (A. Tilke LMU München) – Resist: Calixarene

Optical lithography Two-photon lithography for complex 3d structures

Optical lithography Two-photon lithography for complex 3d structures

Optical lithography Two-photon lithography for complex 3d structures

Optical lithography Two-photon lithography for complex 3d structures

Optical lithography Quantum dots as 2 photon initiators

2 hν

Cd o ( ) S o o o

N.C. Strandwitz JACS 2008, 130(26), 8280-8288

Optical lithography in aqueous solutions

Jhaveri, et. al. Chem. Mater. 2009, 21 (10), 2004 ff. Maskless optical lithography - A simple setup

100 µm lines 500 µm pitch

Musgraves et. al. Am. J. Phys. 2005, 73 (10), 980 ff. Maskless optical lithography – 3d stereolithography

Sun et. al. Sensors and Actuators A 121, 2005, 113 ff. Maskless optical lithography – 3d stereolithography

Choi et. al. J. Mat. Process. Tech. 209, 2009, 5494 ff. Maskless optical lithography – 3d stereolithography

Kidney scaffold

Choi et. al. J. Mat. Process. Tech. 209, 2009, 5494 ff. DMD chip element

Monk et. al. Microelectronic Eng., 27, 1995, 489 ff. Optical lithography in microfluidic systems

Lee et. al. Lab Chip 9, 2009, 1670 ff. Optical lithography in microfluidic systems

Chung et. al. Nature Materials 7, 2008, 581 ff. Optical lithography in µ-fluidic systems – Particle assembly

Chung et. al. Nature Materials 7, 2008, 581 ff. Multi-LED array

Grossmann et. al. J. Neural Eng., 11, 2010, 016004 ff. Multi-LED array

Local stimulation of nerve cells

Grossmann et. al. J. Neural Eng., 11, 2010, 016004 ff. Synchroton lithography / Synchroton X-rays

Synchroton lithography X-rays

Synchroton lithography / LIGA X-rays

Synchroton lithography / Mask production X-rays

Polymer embossing

Embossing machine Process steps (Jenoptik) Cycle time ~ 7 minutes

Heating of substrate and tools above Tg

Application of pressure (~ kN)

Cooling of substrate and embossing tool below Tg

Removal of tool

Polymer embossing

Silicon master embossing tool Polymer replica made by embossing

Polymer microysystems

Lensarrays Beam splitter

Microdropdeposition

Polydimethylsiloxane (PDMS) - The material

- Me : - CH3

Pt Curing

Crosslinking Linear flexible polymer Flexible crosslinked (liquid @RT) Rubber ( @RT)

Polydimethylsiloxane (PDMS) - The material

Chemical crosslinking by hydrosilylation

Schmid,H. Macromolecules 33, 3042 (2000) Polydimethylsiloxane (PDMS) - The material

Chemical modification by hydrosilylation

(-O-CH2-CH2)- EO

Hydrophilic

Polydimethylsiloxane (PDMS) - The material

Jessamine Ng Lee, Cheolmin Park,† and George M. Whitesides* Anal. Chem.2003, 75,6544-6554 Polydimethylsiloxane (PDMS) - The material T.R.E. Simpsona, Z. Tabatabaianb, C. Jeynesb, B. Parbhooc, and J.L. Keddiea*

Polydimethylsiloxane (PDMS) - The material Hydrophilization by surface plasma treatment

O. Steinbock, Langmuir 19, 8117 (2003)

Liquid filling of a capillary by Surface interactions

S. Stark,Microelectronic Eng. 67/68, 229 (2003)

Liquid filling of a capillary by Surface interactions

S. Stark,Microelectronic Eng. 67/68, 229 (2003)

Polydimethylsiloxane (PDMS) - The material Hydrophilization by surface plasma treatment

O. Steinbock, Langmuir 19, 8117 (2003)

Polydimethylsiloxane (PDMS) - The material Hydrophilization by surface plasma treatment

Hydrophobic recovery measured by surcface force AFM

M. Meincken, T.A. Berhane, P.E. Mallon, Polymer 46 (2005) 203–208 Polydimethylsiloxane (PDMS) - The material

Compression mold 2 N/mm2

Compression mold 9.7 N/mm2 Schmid,H. Macromolecules 33, 3042 (2000) Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

PDMS based complex microfluidic systems

Multilayer µ-fluidic systems a) Fluidic transport layer b) Control layer

S. Quake,Science 298, 580 (2002)

TIRF measurement of particle velocity near surfaces

K.Breuer 2003 ASME International Mechanical Engineering Congress & Exposition Washington, D.C., November 16-21, 2003

TIRF measurement of particle velocity near surfaces

K.Breuer 2003 ASME International Mechanical Engineering Congress & Exposition Washington, D.C., November 16-21, 2003

Unconventional lithographic techniques

Unconventional lithographic techniques

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ - J. AM. CHEM. SOC. 2004, 126, 7744 7745 Softlithographic techniques

UV induced radical polymerisation of polyurethaneacrylates

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ - J. AM. CHEM. SOC. 2004, 126, 7744 7745 Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ - J. AM. CHEM. SOC. 2004, 126, 7744 7745 Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ - J. AM. CHEM. SOC. 2004, 126, 7744 7745 Rigiflex lithography

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ - J. AM. CHEM. SOC. 2004, 126, 7744 7745 Rigiflex lithography

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ - J. AM. CHEM. SOC. 2004, 126, 7744 7745 Complex shaped 3d nanoparticles

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimone Chem. Soc. Rev., 2006, 35, 1095–1104

Complex shaped 3d nanoparticles

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimone Chem. Soc. Rev., 2006, 35, 1095–1104

S.E.A. Gratton et al. / Journal of Controlled Release 121 (2007) 10–18 Complex shaped 3d nanoparticles

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimone Chem. Soc. Rev., 2006, 35, 1095–1104 S.E.A. Gratton et al. / Journal of Controlled Release 121 (2007) 10–18 Complex shaped 3d nanoparticles

Complex shaped 3d nanoparticles

Jason P. Rolland,† Benjamin W. Maynor,† Larken E. Euliss,† Ansley E. Exner,† Ginger M. Denison,† and Joseph M. DeSimone J. AM. CHEM. SOC. 9 VOL. 127, NO. 28, 2005 10099

Polymers in micro- and nanotechnology

2d structures 3d structures Lateral structures

DNA Chip Microfluidic channel

„Surface Engineering“

Au, Cu, Ag HS-R

Al2O3 (OH)3-P-O-R

SiO 2 X3Si-O-R

Tailored Surface Chemistry

Micro-contact printing

Polymer stamp (PDMS)

Siliconmicrostructure or PMMA resist

Micro-contact printing

Polymer stamp (PDMS)

„Ink“

Micro-contact printing

Polymer stamp (PDMS)

„Ink“

„Surface Engineering“

Surface Polymerized Polypeptides

Poly-γ-benzylglutamate

Orientational Change of α-Helix by solvent Resulting change in layer thickness Poly-γ-benzylglutamate

Orientational Change of α-Helix by solvent Resulting change in layer thickness

„Surface Engineering“

Surface Patterning

Surface patterning

Microcontact Printing (Whitesides) 1 µm Electron Beam Lithography of Self-Assembled Monolayers (Craighead) Dip-Pen Lithography 1 nm of Self-Assembled Monolayers (C.A. Mirkin)

Micro-contact printing of solutions

M. Wang, H.-G. Braun, T. Kratzmüller, E. Meyer, Adv. Mater. 13, 1312 (2000) Micro-contact printing of solutions

M. Wang, H.-G. Braun, T. Kratzmüller, E. Meyer, Adv. Mater. 13, 1312 (2000) Micro- and nanotechnology as multidisciplinary fields

Physics

Fundamentals for structuring technologies

Optical tweezers Dip pen lithography Affecting Physicochemical and Physical Properties of Surfaces by Surface Patterning

Wetting on patterned surfaces

Non-wettable wettable

T > Tdew Peltierelement

T < Tdew Peltierelement

Wetting

Liquids on homogeneous surfaces

Θ

γ γ γ Θ SV - ( SL + L cos( )) Youngs Equation g γ R Pinside – Poutside = 2 /R

Laplace pressure

Liquid morphologies on striped surfaces

Theoretical description: R. Lipowsky, Structured surfaces and morphological wetting transitions, Interface Science 9, 105 - 115 (2001) Liquid morphologies on patterned surfaces

Capillary bridges as structural motifs

Capillary bridges as complex shaped liquid / liquid interfaces

Dewetting

Water assisted dewetting

H.-G. Braun, E. Meyer, Thin Solid Films 345, 222 (1999) Film rupture during dewetting on homogeneous surfaces

Film formation by controlled dewetting on micropatterned surfaces

E. Meyer, H.-G. Braun, Macromol. Mater. Eng. 276/277, 44 (2000) Mesophases of amphiphilic molecules

A. Mueller, D. O‘Brien, Chem. Rev. 2002, 102, 727

Lipid bilayers and their transitions

A. Mueller, D. O‘Brien, Chem. Rev. 2002, 102, 727

Topochemical Polymerisation of polydiacetylenes

G. Wegner

Polymerisable diacetylenes in vesicles / liposomes / layers

H.Y. Shim, S.H. Lee, D.J. Ahn, K.-D. Ahn, J.M. Kim, Mat. Sci. Eng. C 24, 2004, 157 H.Y. Shim, S.H. Lee, D.J. Ahn, K.-D. Ahn, J.M. Kim, Mat. Sci. Eng. C 24, 2004, 157 Stress induced transformations of polydiacetylene molecules ( AFM , SNOM)

R.W. Carpick, J.Phys.Cond. Matter 16, 2004, R679 Planar conformation of polyconjugated polymer backbone in blue polydiacetylenes R.W. Carpick, J.Phys.Cond. Matter 16, 2004, R679 Change in colour due to interaction of polyacrylic acid with blue ( B) vesicles

J.M. Kim et. Al. , Adv. Mat. 15, 2003, 1118 Polydiacetylenes as molecular stress sensors

R. Jelinek, JACS 123, 2001, 417 Formation of vesicle networks by electroporation, tether formation and ‚extrusion‘

O. Orwar, Langmuir 99, 2002, 11573 Formation of vesicle networks

O. Orwar, Langmuir 99, 2002, 11573 Formation of multi component vesicle networks

O. Orwar, Langmuir 99, 2002, 11573 Formation of multi component vesicle networks

O. Orwar, Langmuir 99, 2002, 11573 3-d Liposome networks attached to SU-8 Resist

O. Orwar, Langmuir 20, 2004, 5637 Formation of vesicle networks

O. Orwar, Langmuir 99, 2002, 11573 Knots in nanofluidic vesicle networks

O. Orwar, PNAS 101, 2004, 7949 Brochard-Wyart, Langmuir 19, 2003, 575 Brochard-Wyart, Langmuir 19, 2003, 575 Seifert et. Al. PRL, 2004, 208101 Maeda, BBA 1564, 2002, 165 O. Orwar, Anal. Chem. 75, 2003, 2529 Formation of vesicle networks on microstructured surfaces

O. Orwar, Langmuir 100, 2003, 3904 Generating flow between vesicle networks by changing their shape

M. Karlsson, O. Orwar, Annual Reviews Physical Chemistry 55, 2004, 613 Diffusion through nanochannels

O. Orwar, Anal. Chem. 75, 2003, 2529 The concept of vesicle nanofluidic networks

M. Karlsson, O. Orwar, Annual Reviews Physical Chemistry 55, 2004, 613 Formation of lipid double layer from vesicles

SG Boxer , Biophysical Journal , 2002, 83, 3372 Mobile microstructured membranes

SG Boxer , Langmuir , 2001, 17, 3400 Field induced diffusion of lipids

SG Boxer , Accounts Chemical Research , 2002, 35, 149 Mobile microstructured membranes

SG Boxer , Current Opinion Chemical Biology , 2000, 704 Membrane Microfluidics

SG Boxer , Langmuir , 2003, 19, 1624 Membrane Microfluidics

SG Boxer , Langmuir , 2003, 19, 1624 Dynamics of nanoobjects Motion in ratchets

Dynamics of nanoobjects Motion in ratchets

Dynamics of nanoobjects Motion in ratchets

Bader et. al.Appl. Phys. A 75, 275–278 (2002) Dynamics of nanoobjects Motion in ratchets

Bader et. al.Appl. Phys. A 75, 275–278 (2002) Dynamics of nanoobjects Motion in ratchets

Bader et. al.Appl. Phys. A 75, 275–278 (2002) Dynamics of nanoobjects Motion in ratchets

Gorre-Talini, Spatz, Silberzan Chaos, Vol. 8, No. 3, 1998

Dielectric force patterning

Fudouzi, Journal of Nanoparticle Research 3: 193–200, 2001.

Dielectric force patterning

Fudouzi, Journal of Nanoparticle Research 3: 193–200, 2001.

Optical tweezers

Optical multitweezers

Optical tweezers for multiple particle manipulation

Flow behaviour on different scales

Turbulent flow

Flow on a very large scale

Flow behaviour on different scales

Laminar flow

Small scale

Physical effects of small volumes

From turbulent to laminar flow ν = Re = vs L / Inertia forces / Viscous forces Re : Reynolds number L : width of channel (pipe) [m] -1 ν : 2 -1 vs : mean fluid velocity [m s ] kinematic fluid viscosity [m s ]

Typical Reynolds numbers

(Relaminar < 2000 –3000 < Returbulent)

Spermatozoa ~ 1 x 10-2 Blood flow in brain ~ 1 x 102 Blood flow in aorta ~ 1 x 103 Microchannels < 1

6 Person swimming ~ 4 x 10 Physical effects of small volumes

Parabolic flow profile

Laminar and turbulent flow

Physical effects of small volumes

From turbulent to laminar flow

Aqueous solution L c0, c1

100 nm < L < 100 µm

Stationary flow boundary between flowing miscible liquids (water)

Concentration gradient c0, c1 causes Mixing through diffusion across the boundary

Generation Understandig

Microfluidics

Application

of microsized liquid phases The cell as a highly functionalized microdroplet

Going smaller and smaller

100 µm 10 µm 1 nanoliter 1 picoliter

1 mm 1 µm 1 microliter 1 femtoliter

1 cm 100 nm 1 milliliter 1 attoliter

1 nm 10 nm

Physical effects of small volumes

Increase in specific surface area with decreasing volume

R V = 4/3 π R3 S = 4 π R2

Sspecific = S/V = 3 / R

Surface interactions and forces become dominating in small dimensions

Geometrical features of microfluidic systems

Flow induced generation of microemulsion droplets

Flow induced generation of microemulsion droplets

Rayleigh instability of cylindrical shaped liquid structures

Flow induced generation of microemulsion droplets

Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream P. B. Umbanhowar, V. Prasad, D. A. Weitz Langmuir 16 , 347 (2000) Flow induced encapsulation of cells

Selective Encapsulation of Single Cells and Subcellular Organelles into Picoliter- and Femtoliter-Volume Droplets Mingyan He, J. Scott Edgar, Gavin D. M. Jeffries, Robert M. Lorenz, J. Patrick Shelby, and Daniel T. Chiu Anal. Chem. 2005, 77, 1539- 1544 Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. Weitz Science 308 , 537 (2005) Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. Weitz Science 308 , 537 (2005) Flow induced generation of complex microphases

Monodisperse Double Emulsions Generated from a Microcapillary Device S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,H. A. Stone, A. Weitz Science 308 , 537 (2005) Micro- and nanostructures through self-assembly

Guillaume Tresset† and Shoji Takeuchi*,‡ Anal. Chem.2005, 77,2795-2801

Cell encapsulatioon in microdroplets

Mingyan He, J. Scott Edgar, Gavin D. M. Jeffries, Robert M. Lorenz, J. Patrick Shelby, and Daniel T. Chiu* Anal. Chem.2005, 77,1539-1544 Biomimetics – learning from Biosystems

1. Pearls and Mussels 1. Magnetosomes Structural properties 1. Silk 1. Diatomes

1. Lotus effect Functional properties 1. Gecko

Biomimetic calcification Nacre and pearls

Biomimetic calcification

Biomimetic calcification

Biomimetic calcification

Biomimetic calcification

Biomimetic calcification

J. Aizenberg, A.J. Black, G.M. Whitesides, Nature 398 (1999) 495

Biomimetic calcification

J. Aizenberg, A.J. Black, G.M. Whitesides, Nature 398 (1999) 495

Biomimetic calcification

J. Aizenberg, Advanced Materials 16 (2004) 1295 Biomimetic calcification

J. Aizenberg, Advanced Materials 16 (2004) 1295 Biomimetic calcification

J. Aizenberg et. Al., Science 299 (2003) 1205 Silk

Tensile strength : 25.000 kg/cm² ( 5 times steel)

Silk

Glcyin 37 % , Alanin 18 % , Polar Aminoacids 26 %

Silk

Silk ------QGAGAAAAAA-GGAGQGGYGGLGGQG ------AGQGGYGGLGGQG ___ --AGQGAGAAAAAAAGGAGQGGYGGLGSQG AGR---GGQGAGAAAAAA-GGAGQGGYGGLGSQG AGRGGLGGQGAGAAAAAAAGGAGQGGYGGLGNQG AGR---GGQ--GAAAAAA-GGAGQGGYGGLGSQG AGRGGLGGQ-AGAAAAAA-GGAGQGGYGGLGGQG ------AGQGGYGGLGSQG AGRGGLGGQGAGAAAAAAAGGAGQ--- GGLGGQG ------AGQGAGASAAAA-GGAGQGGYGGLGSQG AGR---GGEGAGAAAAAA-GGAGQGGYGGLGGQG ------_----AGQGGYGGLGSQG AGRGGLGGQGAGAAAA---GGAGQ---GGLGGQG ------AGQGAGAAAAAA-GGAGQGGYGGLGSQG AGRGGLGGQGAGAVAAAAAGGAGQGGYGGLGSQG AGR---GGQGAGAAAAAA-GGAGQRGYGGLGNQG AGRGGLGGQGAGAAAAAAAGGAGQGGYGGLGNQG AGR---GGQ--GAAAAA--GGAGQGGYGGLGSQG AGR---GGQGAGAAAAAA-VGAGQEGIR--- GQG

M. Xu, RV Lewis, PNAS, 87 (1990) 7120 J.D. van Beek, S. Hess, F. Vollrath & B.H. Meier PNAS 99 (2002) 10266 Silk

Molecular nanosprings in spider capture-silk threads NATHAN BECKER1, EMIN OROUDJEV1, STEPHANIE MUTZ1, JASON P. CLEVELAND2, PAUL K. HANSMA1, CHERYL Y. HAYASHI3, DMITRII E. MAKAROV4 AND HELEN G. HANSMA Nature Materials 2 (2003) 278 Silkcapsules

T. Scheibel, Adv. Mat. 19 ( 2007) 1810

Silkcapsules

T. Scheibel, Adv. Mat. 19 ( 2007) 1810

Magnetic Particles

Crystallographic structure of Magnetite (Fe3O4)

Magnetic Particles

Electron spin configuration in Magnetite

Magnetic Order in Solid State

Ferromagnetic: Parallel spin order

Antiferromagnetic: Antiparallel spin order

Paramagnetic: No spin order

Superparamagnetic: Temporary spin orientation In external magnetic field – nanosized effect

Magnetization in ferro- and Superparamagnetic systems

Neutron Scattering

Neutron Scattering Powder Diffractometer

Neutron Scattering

Magnetosome Formation

Bazylinski, D., Frankel, R., 2000. Magnetic iron oxide and iron sulfide minerals within microorganisms. In: Baeuerlein, E. (Ed.), Biomineralization: from biology to biotechnology and medical application. Wiley-VCH, Weinheim, Germany, pp. 25–46.

Magnetosome Formation

Arash Komeili, et al., Science 311, 242 (2006) Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK Magnetosome Formation

Arash Komeili, et al., Science 311, 242 (2006) Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK Magnetosome Formation

Atsushi Arakaki , J. R. Soc. Interface (2008) 5, 977–999 Formation of magnetite by bacteria and its application

Magnetosome Formation

Magnetosome Formation

Magnetosome Formation

Magnetosome Formation

Dirk Schüler J. Molec. Microbiol. Biotechnol. (1999) 1(1): 79-86. Magnetosome Formation

Magnetite formation in presence of the protein mms6 results in similar size distribution as in the cell

Arakaki, A., Webb, J. & Matsunaga, T. A novel protein tightly bound to bacterial magnetite particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem. 278, 8745–8750 (2003). Magnetosome Application

Atsushi Arakaki , J. R. Soc. Interface (2008) 5, 977–999 Formation of magnetite by bacteria and its application

Magnetosome Stabilisation

a) With MMa protein coating b) Without MM protein coating MM – Magnetosome Membrane

Claus Lang and Dirk Schüler , J. Phys.: Condens. Matter 18 (2006) S2815–S2828 Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes Magnetosome Functionalization

Claus Lang and Dirk Schüler , J. Phys.: Condens. Matter 18 (2006) S2815–S2828 Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes Synthetic Magnetosomes

Yeru Liu and Qianwang Chen , Nanotechnology 19 (2008) 475603 Synthesis of magnetosome chain-like structures

Synthetic Magnetosomes

Yeru Liu and Qianwang Chen , Nanotechnology 19 (2008) 475603 Synthesis of magnetosome chain-like structures

Magnetic nanoparticles in hyperthermia

Rudolf Hergt, Silvio Dutz , Journal of Magnetism and Magnetic Materials 311 (2007) 187– 192 Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy Magnetic nanoparticles in hyperthermia

Rudolf Hergt, Silvio Dutz , Journal of Magnetism and Magnetic Materials 311 (2007) 187– 192 Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy Biomimetic approaches The gecko – spiderman

Autumn, K. MRS Bulletin 32, 473 (2007) Biomimetic approaches The gecko – structural entities

C: Setae D: Single Setae - individual keratin fibrills (Spatula) Autumn, K. MRS Bulletin 32, 473 (2007) Biomimetic approaches The gecko – structural entities on various sizes

Gao,H. Mechanics of Materials 37, 275 (2005) Biomimetic approaches The gecko – some basic mechanics

F = 2/3 π R γ Van der Waals interaction

Arzt,E. PNAS 100, 10603 (2003) Biomimetic approaches The gecko – some basic mechanics

Arzt,E. PNAS 100, 10603 (2003) Biomimetic approaches The gecko – adhesion properties of materials

Autumn, K. MRS Bulletin 32 , 473 (2007) Biomimetic approaches The gecko – scaling of stresses

Autumn, K. MRS Bulletin 32 , 473 (2007) Biomimetic approaches The gecko – theoretical approaches Reibung Saugnäpfe Kapillarkräfte Mikroverzahnung Elektrostatik Van der Waals

Biomimetic approaches Van der Waals Kräfte Tritt zwischen allen Materialien auf Bewirkt durch Elektronenfluktuation Kurzreichweitig ~ 1/ D3 Stark abhängig von der Kontaktfläche

Biomimetic approaches Van der Waals Forces Hamaker constant:

Add up all the interactions Between the ‚red‘ atoms

Interaction free energy between two cubes of edge length L And separation distance l l<< L (-A/12 π l2) L2 (per pair)

L

l

Biomimetic approaches The gecko – technological applications

F‘ = n1/2 F

Chan, EP. MRS Bulletin 32, 496 (2007) Biomimetic approaches The gecko – technological applications

Chan, EP. MRS Bulletin 32, 502 (2007) Biomimetic approaches The gecko – biomimetic materials

Geim, AK Nature Materials 2, 461 (2003) Biomimetic approaches The gecko – technological applications

Chan, EP. MRS Bulletin 32, 502 (2007) Biomimetic approaches The gecko - some structural aspects of reversible

Creton, C. & Gorb, S. MRS Bulletin 32, 466 (2007) Biomimetic approaches The gecko – capillary effects (secondary)

Huber G., PNAS 102, 16293 (2005) Biomimetic approaches The gecko – technological applications

Daltorio, KA. MRS Bulletin 32 , 504 (2007) Hydrophobic surface of collemboles (Springschwanz) Hydrophobic surface of collemboles (Springschwanz) Biomimetic approaches Ultrahydrophobic surfaces

Influence of surface texture by roughness a,c Wenzel case Influence of surface texture by air entrapment b Cassie – Baxter case

Quere, D. , Nature 1, 14 (2002) Biomimetic approaches Ultrahydrophobic surfaces

Wenzel case θ θ cos ( r) = r cos( s) Contact angle Contact angle on rough surface on smooth surface

r = A / A‘

A = true surface area A‘= apparent surface area

Cho, W.K. , Nanotechnology 18, 385602 (2007) Biomimetic approaches Ultrahydrophobic surfaces

Cassie-Baxter θ θ cos ( r) = f1 cos( s) – f2

f1 = surface fraction mat. f2 = surface fraction air Cho, W.K. , Nanotechnology 18, 385602 (2007) Biomimetic approaches Ultrahydrophobic surfaces

Shibuichi, S. , J. Phys. Chem. 100, 19512 (1996) Biomimetic approaches Ultrahydrophobic surfaces

Aluminiumoxide surface hydrophobization by topography

Cho, W.K. , Nanotechnology 18, 385602 (2007) Biomimetic approaches Ultrahydrophobic surfaces

Surface hydrophobization by chemistry

Cho, W.K. , Nanotechnology 18, 385602 (2007) Biomimetic approaches Ultrahydrophobic surfaces

Cho, W.K. , Nanotechnology 18, 385602 (2007) Biomimetic ultrahydrophobic surface of Indium oxide

Y. Li j. Coll. Int. Sci. 314, 615-620 (2007) Self organization of µ-/ mesocaled objects Self-assembling machines

S. Griffith Nature 237, 636 (2005) Self organization of µ-/ mesocaled objects Self-assembling machines

R. Gross IEEE Transactions on robotics 237, 1115-1130 (2006) Self organization of µ-/ mesocaled objects Self-assembling microparts

W. Zheng and H.O. Jacobs Adv. Mater. 2006, 18, 1387–1392 Self organization of µ-/ mesocaled objects Interfacial tension driven self-assembly

J. Fang , KF Böhringer J. Micromech. Microeng. (2006) 721–730 Self organization of µ-/ mesocaled objects Principles of particle self-assembly

L.Malaquin. Langmuir 2007, 23, 11513-11521 Self organization of µ-/ mesocaled objects Principles of particle self-assembly

L.Malaquin. Langmuir 2007, 23, 11513-11521 Self organization of µ-/ mesocaled objects Principles of particle self-assembly

PolyStyrene Gold particles particles

L.Malaquin. Langmuir 2007, 23, 11513-11521 Ultrahydrophobic honeycomb films

W. Dong Langmuir 2009, 25, 173-178 Self organization of µ-/ mesocaled objects Principles of particle self-assembly / DNA assisted SA

M,.P. Valignat PNAS 2005, 102, 4225-4229 Self organization of µ-/ mesocaled objects Depletion induced assembly

Hernadez , Mason TG , J.Phys. Chem. C (2007) 4477 Self organization of µ-/ mesocaled objects Principles of particle self-assembly / DNA assisted SA

M,.P. Valignat PNAS 2005, 102, 4225-4229 Self organization of µ-/ mesocaled objects Principles of particle self-assembly / electrostatic SA

J. Tien Langmuir 1997, 13, 5349-5355 Self organization of µ-/ mesocaled objects Principles of particle self-assembly / electrostatic SA

J. Tien Langmuir 1997, 13, 5349-5355 Self organization of µ-/ mesocaled objects Principles of particle self-assembly / wetting controlled SA

Rothemund PNAS 2000, 97, 984-989 Self organization of µ-/ mesocaled objects Flotation of (micro)objects - water strider

Pan ACS Appl. Mat. & Interfaces 2010, 2, 2025 Self organization of µ-/ mesocaled objects Flotation of (micro)objects - water strider

Pan ACS Appl. Mat. & Interfaces 2010, 2, 2025 Self organization of µ-/ mesocaled objects Flotation of (micro)objects - water strider

Chang Appl. Phys. Letters 95 (2009) 204107 Self organization of µ-/ mesocaled objects “Cheerios” effect

Vella American Journal of Physics 73 (2005) 817 Self organization of µ-/ mesocaled objects Principles of particle self-assembly / wetting controlled SA

Rothemund PNAS 2000, 97, 984-989 Self organization of µ-/ mesocaled objects Principles of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389 Self organization of µ-/ mesocaled objects Principles of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389 Self organization of µ-/ mesocaled objects Principles of particle self-assembly / surface induced SA

Onoe Small 2007, 3, 1383-1389 Self organization of µ-/ mesocaled objects Interfacial tension driven self-assembly

M. Bowden Journal of the American Chemical Society 121, 5373-5391 (1999) Self organization of µ-/ mesocaled objects Interfacial tension driven self-assembly

M. Bowden Journal of the American Chemical Society 121, 5373-5391 (1999)