Colloidal Dispersion of Gold Nanorods: Historical Background, Optical Properties, Seed-Mediated Synthesis, Shape Separation and Self-Assembly

Total Page:16

File Type:pdf, Size:1020Kb

Colloidal Dispersion of Gold Nanorods: Historical Background, Optical Properties, Seed-Mediated Synthesis, Shape Separation and Self-Assembly Materials Science and Engineering R 65 (2009) 1–38 Contents lists available at ScienceDirect Materials Science and Engineering R journal homepage: www.elsevier.com/locate/mser Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly Vivek Sharma a,1, Kyoungweon Park a,2, Mohan Srinivasarao a,b,c,* a School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America b School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States of America c Center for Advanced Research on Optical Microscopy (CAROM), Georgia Institute of Technology, Atlanta, GA 30332, United States of America ARTICLE INFO ABSTRACT Article history: The color of colloidal dispersions of gold particles in a fluid, typically water, varies from red to blue, Available online 28 April 2009 depending upon the shape and size of particles. The color and optical properties of gold nanoparticles originate from localized surface plasmons, and are sensitive to their local dielectric environment. Unlike Keywords: nanospheres, the optical properties, hydrodynamic behavior as well as phase behavior of nanorods are Gold Nanorods influenced by their shape anisotropy. Thus, rods have an additional absorption peak, possess very Plasmon resonance different dynamics (affects sedimentation) and their concentrated dispersions form liquid crystalline Self Assembly phases. In this review, we focus on presenting the essential shape dependent optics, as well as the Nanocomposites hydrodynamics and phase behavior of rod-like gold nanoparticles. We reveal our methodology for Seed-mediated synthesis making less polydisperse nanorods sols by using an optimized seed-mediated synthesis (controlled Evaporative drying chemistry), followed by shape separation by centrifugation (based on our hydrodynamics arguments). We elucidate the role of Brownian motion in determining colloidal stability and sedimentation behavior, and describe patterns formed by drying mediated assembly on glass slides and TEM grids. We outline early studies (before 1930) of gold sols that are not only instructive in learning about synthesis and physical properties of gold nanoparticles, but show how the study of colloidal gold established many key principles in colloidal science. ß 2009 Elsevier B.V. All rights reserved. Contents 1. Introduction . 2 2. Historical perspective on colloidal gold sols. 3 2.1. Faraday’s experiments on synthesis and color of ruby gold. 3 2.2. Synthesis of gold sols, including seed-mediated method . 3 2.3. Size and shape dependent color of gold sols . 4 2.4. Scattering and absorption: Mie theory for spherical, and Gans theory for ellipsoidal particles . 4 2.5. Shape effects on Brownian motion: sedimentation, diffusion and viscosity . 5 2.6. Colloidal stability, ‘gold number’ and protective action of macromolecules . 6 2.7. Other metal nanoparticles and inorganic lyotropic liquid crystals . 6 2.8. Recent interest in colloidal gold . 6 3. Colloidal nature of gold . 6 4. Optical properties of gold nanoparticles. 8 4.1. Genesis of extinction spectrum . 8 4.2. Localized surface plasmon resonance for spherical particles . 9 4.3. Plasmon resonance for ellipsoidal nanoparticles . 10 4.4. Beyond dipole resonance and beyond electrostatics . 10 * Corresponding author at: School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America. E-mail address: [email protected] (M. Srinivasarao). 1 Current address: Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 3-249, Cambridge, MA 02139, United States. 2 Current address: Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433-7702, United States. 0927-796X/$ – see front matter ß 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.mser.2009.02.002 2 V. Sharma et al. / Materials Science and Engineering R 65 (2009) 1–38 4.5. Computational methods. 11 4.6. Absorption spectrum of colloidal dispersions of gold nanorods . 11 4.7. Local field enhancements and sensing applications . 11 4.8. Color of colloidal dispersions of gold nanorods . 12 4.9. Polarization dependent color and absorption in polymer–gold nanocomposite films . 13 4.10. The ultramicroscope. 13 5. Synthesis of gold nanorods . 15 5.1. Recipe for nanorod synthesis using seed-mediated method with binary surfactant . 16 5.2. Effect of surfactant ‘counter-ion’ on morphology of nanoparticles . 17 5.3. The role of binary surfactant and precursor complexes . 18 5.4. Role of ascorbic acid (AA) as a reducing agent . 20 5.5. Effect of temperature on growth . 21 5.6. The role of supersaturation in producing monodisperse sols. 21 6. Shape separation of colloidal gold nanorods . 23 6.1. Theoretical aspects of sedimentation of rods and spheres . 23 6.2. Separation of nanorods from spherical nanoparticles using centrifugation. 24 6.3. Separation of nanorods with different aspect ratio . 25 7. Self-assembly of rod-like nanoparticles . 26 7.1. Lyotropic liquid crystals from inorganic colloidal particles . 26 7.2. Liquid crystalline behavior of spherocylinders . 27 7.3. Coffee ring-like pattern formation with rod-like particles . 28 7.4. Concentric birefringent bands on glass slide: Liesegang ring like patterns . 29 7.5. Self-assembly on TEM grids. 32 7.5.1. Two-dimensional phase transitions observed in self-assembly on a TEM . 32 7.5.2. Heterogeneity and polydispersity of the sample . 33 7.5.3. Patterns formed by evaporation . 34 8. Synopsis and outlook. ..
Recommended publications
  • Zinc Oxide Nanorod Surface-Enhanced Raman Scattering Substrates Without and with Gold Nanoparticles Fabricated Through Pulsed-Laser-Induced Photolysis
    applied sciences Article Zinc Oxide Nanorod Surface-Enhanced Raman Scattering Substrates without and with Gold Nanoparticles Fabricated through Pulsed-Laser-Induced Photolysis Chia-Man Chou 1,2 , Le Tran Thanh Thi 3,4, Nguyen Thi Quynh Nhu 3,4, Su-Yu Liao 5, Yu-Zhi Fu 3, Le Vu Tuan Hung 4,* and Vincent K. S. Hsiao 3,* 1 Division of Pediatric Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; [email protected] 2 Department of Medicine, National Yang-Ming University, Taipei 112, Taiwan 3 Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou 54561, Taiwan; [email protected] (L.T.T.T.); [email protected] (N.T.Q.N.); [email protected] (Y.-Z.F.) 4 Department of Applied Physics, Faculty of Physics and Engineering Physics, University of Science, Ho Chiç Minh City, Vietnam 5 Department of Electrical Engineering, National Chi Nan University, Nantou 54561, Taiwan; [email protected] * Correspondence: [email protected] (L.V.T.H.); [email protected] (V.K.S.H.) Received: 18 June 2020; Accepted: 17 July 2020; Published: 21 July 2020 Abstract: We fabricated surface-enhanced Raman scattering (SERS) substrates using gold nanoparticle (AuNP)-decorated zinc oxide (ZnO) nanorods (NRs). Prior to decoration with AuNPs, ZnO NRs on the glass substrate fabricated using the sol–gel method could enhance the SERS signal for detecting 5 10− M rhodamine 6G (R6G). Microscopic analysis revealed that the thermal-annealing process for fabricating the seed layers of ZnO facilitated the growth of ZnO NRs with the highly preferred c-axis (002) orientation.
    [Show full text]
  • Viewsizer 3000
    ViewSizer TM 3000 Unmatched Visualization and Measurement of Nanoparticles Visualize and determine the size distribution of a wide range of nanoparticle sizes even when they coexist in the same liquid. APPLICATIONS INCLUDE • Batteries • Exosomes, microvesicles, • Pharmaceuticals and other biological particles • Catalysts • Limnology • Pigments and inks • Chemical & • Metal powders • Polymers mechanical polishing • Colloid stability • Nanoparticles • Protein aggregation • Cosmetics • Oceanography • Semiconductors • Ecotoxicology • Particle counting • Water quality • Energy • Particle number concentration • Viruses and virus like particles (VLP’s) • Environmental sciences • Particle size distribution even for polydisperse samples High resolution size distribution and nanoparticle concentration Determine both with the ViewSizer™ 3000 INTRODUCTION Analyzing nanoparticles is inherently challenging. They are too small to image with visible light and must be imaged by laborious electron microscopy. Dynamic light scattering and laser diffraction can be used to determine particle size and size distribution with some success. However, as ensemble techniques, high resolution size distribution information cannot be obtained and those methods do not measure particle concentration. The ultramicroscope and nanoparticle tracking have been used with only partial success since the wide range of sizes present in many samples means that scattering from the largest particles is bright enough to saturate the detector and eliminate any hope of learning about
    [Show full text]
  • Solution Processed Zn1-X-Ysmxcuyo Nanorod Arrays for Dye Sensitized
    nanomaterials Article Solution Processed Zn1−x−ySmxCuyO Nanorod Arrays for Dye Sensitized Solar Cells Muhammad Saleem 1,*, Ali Algahtani 2,3 , Saif Ur Rehman 4, Muhammad Sufyan Javed 4,5,*, Kashif Irshad 6 , Hafiz Muhammad Ali 6,7 , Muhammad Zeeshan Malik 8, Amjad Ali 6 , Vineet Tirth 2,3 and Saiful Islam 9 1 Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan 2 Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Saudi Arabia; [email protected] (A.A.); [email protected] (V.T.) 3 Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha 61413, Asir, Saudi Arabia 4 Department of Physics, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan; [email protected] 5 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China 6 Interdisciplinary Research Center in Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Eastern Province, Saudi Arabia; [email protected] (K.I.); hafi[email protected] (H.M.A.); [email protected] (A.A.) 7 Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Eastern Province, Saudi Arabia 8 School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China; [email protected] 9 Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Asir, Saudi Arabia; [email protected] * Correspondence: [email protected] (M.S.); [email protected] (M.S.J.); Tel.: +92-3063645433 (M.S.) Citation: Saleem, M.; Algahtani, A.; Rehman, S.U.; Javed, M.S.; Irshad, K.; Abstract: Ali, H.M.; Malik, M.Z.; Ali, A.; Tirth, Cu- and Sm-doped ZnO nanorod arrays were grown with 1 wt% of Sm and different V.; Islam, S.
    [Show full text]
  • Controlling Nanoparticle Dispersion for Nanoscopic Self-Assembly
    CONTROLLING NANOPARTICLE DISPERSIONS FOR NANOSCOPIC SELF- ASSEMBLY A Project Report presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Polymers and Coatings by Nathan Stephen Starkweather March 2013 © 2013 Nathan Stephen Starkweather ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Controlling Nanoparticle Dispersions for Nanoscopic Self- Assembly AUTHOR: Nathan Stephen Starkweather DATE SUBMITTED: March 2013 COMMITTEE CHAIR: Raymond H. Fernando, Ph.D. COMMITTEE MEMBER: Shanju Zhang, Ph.D. COMMITTEE MEMBER: Chad Immoos, Ph.D. iii ABSTRACT Controlling Nanoparticle Dispersions for Nanoscopic Self-Assembly Nathan Stephen Starkweather Nanotechnology is the manipulation of matter and devices on the nanometer scale. Below the critical dimension length of 100nm, materials begin to display vastly different properties than their macro- or micro- scale counterparts. The exotic properties of nanomaterials may trigger the start of a new technological revolution, similar to the electronics revolution of the late 20th century. Current applications of nanotechnology primarily make use of nanoparticles in bulk, often being made into composites or mixtures. While these materials have fantastic properties, organization of nano and microstructures of nanoparticles may allow the development of novel devices with many unique properties. By analogy, bulk copper may be used to form the alloys brass or bronze, which are useful materials, and have been used for thousands of years. Yet, organized arrays of copper allowed the development of printed circuit boards, a technology far more advanced than the mere use of copper as a bulk material. In the same way, organized assemblies of nanoparticles may offer technological possibilities far beyond our current understanding.
    [Show full text]
  • Differentiating Gold Nanorod Samples Using Particle Size and Shape Distributions from Transmission Electron Microscope Images
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Metrologia Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 May 14. Published in final edited form as: Metrologia. 2018 February 28; 55(2): 254–267. doi:10.1088/1681-7575/aaa368. Differentiating gold nanorod samples using particle size and shape distributions from transmission electron microscope images Eric A Grulke1, Xiaochun Wu2, Yinglu Ji2, Egbert Buhr3, Kazuhiro Yamamoto4, Nam Woong Song5, Aleksandr B Stefaniak6, Diane Schwegler-Berry6, Woodrow W Burchett7, Joshua Lambert7, Arnold J Stromberg7 1Chemical and Materials Engineering, University of Kentucky, Lexington, KY, United States of America 2CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 1001901, People’s Republic of China 3Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany 4National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan 5Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea 6US National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, United States of America 7Applied Statistics Laboratory, University of Kentucky, Lexington, KY, United States of America Abstract Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor.
    [Show full text]
  • Grown and Characterization of Zno Aligned Nanorod Arrays for Sensor Applications
    energies Article Grown and Characterization of ZnO Aligned Nanorod Arrays for Sensor Applications Arkady N. Redkin, Eugene E. Yakimov, Maria V. Evstafieva and Eugene B. Yakimov * Institute of Microelectronics Technology RAS, 6 Academician Ossipyan str., 142432 Chernogolovka, Russia; [email protected] (A.N.R.); [email protected] (E.E.Y.); [email protected] (M.V.E.) * Correspondence: [email protected] Abstract: ZnO nanorods are promising materials for many applications, in particular for UV de- tectors. In the present paper, the properties of high crystal quality individual ZnO nanorods and nanorod arrays grown by the self-catalytic CVD method have been investigated to assess their possible applicationsfor UV photodetectors. X-ray diffraction, Raman spectroscopy and cathodolu- minescence investigations demonstrate the high quality of nanorods. The nanorod resistivity and carrier concentration in dark is estimated. The transient photocurrent response of both as grown and annealed at 550 ◦C nanorod array under UV illumination pulses is studied. It is shown that annealing increases the sensitivity and decreases the responsivity that is explained by oxygen out-diffusion and the formation of near surface layer enriched with oxygen vacancies. Oxygen vacancy formation due to annealing is confirmed by an increase of green emission band intensity. Keywords: ZnO nanorod; self-catalytic CVD method; photoresponse; cathodoluminescence Citation: Redkin, A.N.; Yakimov, E.E.; Evstafieva, M.V.; Yakimov, E.B. Grown and Characterization of ZnO 1. Introduction Aligned Nanorod Arrays for Sensor Zinc oxide, a well-known direct bandgap II–VI semiconductor, is a material with Applications. Energies 2021, 14, 3750. large exciton binding energy (60 meV) and a wide bandgap (Eg ~ 3.37 eV) [1], suitable for https://doi.org/10.3390/en14133750 short wavelength optoelectronic applications [2].
    [Show full text]
  • Nonlinear Dark-Field Microscopy
    pubs.acs.org/NanoLett Nonlinear Dark-Field Microscopy Hayk Harutyunyan,† Stefano Palomba,† Jan Renger,‡ Romain Quidant,‡,§ and Lukas Novotny*,† † Institute of Optics, University of Rochester, Rochester, New York 14627, United States, ‡ ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain, and § ICREA-Institucio´ Catalana de Recerca i Estudis Avanc¸ats, 08010 Barcelona, Spain ABSTRACT Dark-field microscopy is a background-free imaging method that provides high sensitivity and a large signal-to-noise ratio. It finds application in nanoscale detection, biophysics and biosensing, particle tracking, single molecule spectroscopy, X-ray imaging, and failure analysis of materials. In dark-field microscopy, the unscattered light path is typically excluded from the angular range of signal detection. This restriction reduces the numerical aperture and affects the resolution. Here we introduce a nonlinear dark-field scheme that overcomes this restriction. Two laser beams of frequencies ω1 and ω2 are used to illuminate a sample surface and to generate a purely evanescent field at the four-wave mixing (4WM) frequency ω4wm ) 2ω1 - ω2. The evanescent 4WM field scatters at sample features and generates radiation that is detected by standard far-field optics. This nonlinear dark-field scheme works with samples of any material and is compatible with applications ranging from biological imaging to failure analysis. KEYWORDS Dark-field imaging, microscopy, nonlinear wave mixing, optical sensing, detection and
    [Show full text]
  • Nanotechnology and Drug Delivery Part 1: Background and Applications
    Ochekpe et al Tropical Journal of Pharmaceutical Research, June 2009; 8 (3): 265-274 © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved . Available online at http://www.tjpr.org Review Article Nanotechnology and Drug Delivery Part 1: Background and Applications Nelson A Ochekpe 1*, Patrick O Olorunfemi 2 and Ndidi C Ngwuluka 2 1Department of Pharmaceutical Chemistry and 2Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria Abstract Nanotechnology in general and as it relates to drug delivery in humans has been reviewed in a two-part article, the first part of which is this paper. In this paper, nanotechnology in nature, history of nanotechnology and methods of synthesis are discussed, while also outlining its applications, benefits and risks. Nanotechnology is an industrial revolution, based on integration of disciplines that could change every facet of human life. Some examples of changes brought about by reduction in particle sizes to the physical, chemical and biological properties of substances, compounds and drug products have been cited. The benefits of nanotechnology are enormous and so these benefits should be maximized while efforts are made to reduce the risks. Keywords: Nanotechnology, Nanobiotechnology, Nanostructures, Nanomaterials, Nanocarriers, Drug delivery. Received: 4 Nov 2008 Revised accepted: 13 Jan 2009 *Corresponding author: E-mail: [email protected]; Tel: +234-(0)8037006372 Trop J Pharm Res, June 2009; 8 (3): 265 Ochekpe et al INTRODUCTION Definition Nanotechnology can simply be defined as the Nanotechnology in nature technology at the scale of one-billionth of a metre.
    [Show full text]
  • Controlling Gold Nanoparticle Assembly Through Particle
    CONTROLLING GOLD NANOPARTICLE ASSEMBLY THROUGH PARTICLE- PARTICLE AND PARTICLE-SURFACE INTERACTIONS Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Engineering By John Joseph Kelley, M.S. Dayton, Ohio August, 2018 CONTROLLING GOLD NANOPARTICLE ASSEMBLY THROUGH PARTICLE-PARTICLE AND PARTICLE-SURFACE INTERACTIONS Name: Kelley, John Joseph APPROVED BY: ___________________________ ___________________________ Erick S. Vasquez, Ph.D. Donald Klosterman, Ph.D. Advisory Committee Chairman Committee Member Assistant Professor, Department of Associate Professor, Department of Chemical and Materials Engineering Chemical and Materials Engineering ___________________________ ___________________________ Andrey Voevodin, Ph.D. P. Terrence Murray, Ph.D. Committee Member Committee Member Adjunct Professor, Department of Adjunct Professor, Department of Chemical and Materials Engineering Chemical and Materials Engineering ___________________________ Richard A. Vaia, Ph.D. Research Advisor Technical Director, Air Force Research Laboratory ___________________________ ___________________________ Robert J. Wilkens, Ph.D., P.E. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering ii ABSTRACT CONTROLLING GOLD NANOPARTICLE ASSEMBLY THROUGH PARTICLE- PARTICLE AND PARTICLE-SURFACE INTERACTIONS Name: Kelley, John Joseph University of Dayton Advisor: Dr. Erick S. Vasquez
    [Show full text]
  • Gold Nanorod-Based Localized Surface Plasmon Resonance Biosensors: a Review
    City Research Online City, University of London Institutional Repository Citation: Cao, J., Sun, T. and Grattan, K. T. V. (2014). Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and Actuators, B: Chemical, 195(May), pp. 332-351. doi: 10.1016/j.snb.2014.01.056 This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/12795/ Link to published version: http://dx.doi.org/10.1016/j.snb.2014.01.056 Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Gold nanorod-based localized surface plasmon resonance biosensors: A review Jie Cao a,∗, Tong Sun a, Kenneth T.V. Grattan a,b a School of Engineering and Mathematical Sciences, City University London, London EC1V 0HB, UK b City Graduate School, City University London, London EC1V 0HB, UK a b s t r a c t Noble metal nanoparticle-based localized surface plasmon resonance (LSPR) is an advanced and powerful label-free biosensing technique which is well-known for its high sensitivity to the surrounding refrac- tive index change in the local environment caused by the biomolecular interactions around the sensing area.
    [Show full text]
  • Black Phosphorus, an Emerging Versatile Nanoplatform for Cancer Immunotherapy
    pharmaceutics Review Black Phosphorus, an Emerging Versatile Nanoplatform for Cancer Immunotherapy Hao Liu 1,†, Yijun Mei 2,3,† , Qingqing Zhao 2,3,†, Aining Zhang 2,3, Lu Tang 2,3, Hongbin Gao 4,* and Wei Wang 2,3,* 1 Department of Pharmacy, Guangdong Food and Drug Vocational College, Guangzhou 510520, China; [email protected] 2 State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; [email protected] (Y.M.); [email protected] (Q.Z.); [email protected] (A.Z.); [email protected] (L.T.) 3 NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China 4 Department of Pharmacy, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China * Correspondence: [email protected] (H.G.); [email protected] (W.W.) † These authors made equal contributions to this work. Abstract: Black phosphorus (BP) is one of the emerging versatile nanomaterials with outstanding biocompatibility and biodegradability, exhibiting great potential as a promising inorganic nanoma- terial in the biomedical field. BP nanomaterials possess excellent ability for valid bio-conjugation and molecular loading in anticancer therapy. Generally, BP nanomaterials can be classified into Citation: Liu, H.; Mei, Y.; Zhao, Q.; BP nanosheets (BPNSs) and BP quantum dots (BPQDs), both of which can be synthesized through Zhang, A.; Tang, L.; Gao, H.; Wang, various preparation routes. In addition, BP nanomaterials can be applied as photothermal agents W. Black Phosphorus, an Emerging (PTA) for the photothermal therapy (PTT) due to their high photothermal conversion efficiency Versatile Nanoplatform for Cancer and larger extinction coefficients.
    [Show full text]
  • Titanium Dioxide-Coated Zinc Oxide Nanorods As an Efficient
    nanomaterials Article Titanium Dioxide-Coated Zinc Oxide Nanorods as an Efficient Photoelectrode in Dye-Sensitized Solar Cells Qiang Zhang 1 , Shengwen Hou 2 and Chaoyang Li 1,2,* 1 School of Systems Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan; [email protected] 2 Center for Nanotechnology, Kochi University of Technology, Kami, Kochi 782-8502, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-887-57-2106 Received: 14 July 2020; Accepted: 12 August 2020; Published: 14 August 2020 Abstract: Well-arrayed zinc oxide nanorods applied as photoelectrodes for dye-sensitized solar cells were synthesized on an aluminum-doped zinc oxide substrate by the multi-annealing method. In order to improve the chemical stability and surface-to-volume ratio of photoanodes in dye-sensitized solar cells, the synthesized zinc oxide nanorods were coated with pure anatase phase titanium dioxide film using a novel mist chemical vapor deposition method. The effects of the titanium dioxide film on the morphological, structural, optical, and photovoltaic properties of zinc oxide–titanium dioxide core–shell nanorods were investigated. It was found that the diameter and surface-to-volume ratio of zinc oxide nanorods were significantly increased by coating them with titanium dioxide thin film. The power conversion efficiency of dye-sensitized solar cells was improved from 1.31% to 2.68% by coating titanium dioxide film onto the surface of zinc oxide nanorods. Keywords: titanium dioxide; zinc oxide; core–shell nanorods; mist chemical vapor deposition; dye-sensitized solar cell 1. Introduction Since Grätzel et al.
    [Show full text]