Physics Chemistry

Polymers and biopolymers in

Polymerscience Nanoscience micro- and nanotechnology

Life Sciences Engineering Sciences

Biomimetisches Optisch Lithographische Strukturdesign Strukturierungstechniken

Selbstorganisation Motivation Softlithographie

Mikrodisperse Surface Design Strukturelemente

Polymers and biopolymers in micro- and nanotechnology

What are micro- and nanotechnology about ?

• Majour goals • Representative examples from microtechnology • Representative examples from nanotechnology

What are the materials used in micro- and nanotechnology?

• Silicon, metals, semiconductors and inorganics • Polymers, organic materials

Polymers and biopolymers in micro- and nanotechnology

What are the technologies used in micro- and nanosciences?

• Structuring technologies • Analytical techniques • Self assembly

What is the biological input to micro- and nanotechnology?

• Biomimetic strategies • Biophysical techniques

What are the visionary goals of nanotechnology ?

Goals of nanotechnology

Nanotechnology focuses on

• preparation • analysis • understanding of physical properties and • technological application

of nano- and mesosized objects

Nanoobjects

Layers Rods

z y x x y y 1-d 2-d 3-d

< 100 nm

History of nanotechnology

Ultrathin gold layers ( 100 nm) History of nanotechnology

Technological applications of nanoobjects

Colloidal colours in glases –Optical properties of

History of nanotechnology

Alchemist Kunckel Johann Kunckel, der am sächsischen Hof diente und sich in der europäischen Glaskunst auskannte, wurde vom Großen Kurfürsten um 1678 nach Brandenburg gerufen. Der wollte nicht nur die Folgen des Dreißigjährigen Krieges mindern, sondern auch günstig zu hochwertigem Glas kommen. Die wichtigsten Rohstoffe wie Holz und Quarzsande waren in der Mark reichlich vorhanden. Unter dem Vorwand des ungestörten Experimentierens wurde Kunckel auf der heutigen Pfaueninsel isoliert. Nicht zuletzt durch seine Arbeit an der Verbesserung des Rubinglases erlangten seine Produkte den Status luxuriöser Exportartikel.

1682 History of nanotechnology

Alchemist Kunckel

Da ihm aber bald auch dort das Gehalt nicht mehr gezahlt wurde, geriet er in wirtschaftliche Schwierigkeiten und er beschwerte sich in Dresden. Die Antwort der kurfürstlichen Minister lautete: “Kann Kunckel Gold machen, so bedarf er kein Geld, kann er solches aber nicht, warum solle man ihm Geld geben?”

1682 History of nanotechnology Die herrliche rote Farbe der kolloiden Goldlösung hat die Technik schon seit vielen Jahrhunderten im Goldrubinglas benutzt, das, wie Zsigmondy und Siedentopf mit Hilfe des Ultramikroskops bewiesen haben, feste Teilchen metallischen Goldes als färbende Substanz enthält (im Ultramikroskop erscheinen diese Goldteilchen als grünglänzende Scheibchen). Man stellt das echte Rubinglas her, indem man zur Glasmasse Chlorgold zufügt. Bei rascherem Abkühlen erhalt man ein farb- loses Glas; erhitzt man von neuem, bis das Glas erweicht, so läuft es plötzlich prachtvoll rubinrot an. Schlechtes Rubinglas dagegen wird beim Wiedererhitzen blau, violett und rosa; das Ultramikroskop zeigt hier viel hellere und viel weiter voneinander entfernte Teilchen, die im blauen Glase kupferrot, im violetten Glase gelb und dort, wo das Glas rosa ist, grün glänzen. Die Bedeutung der Kolloide für die Technik K. Arndt in Kolloid Zeitschrift S. 1 (1909) History of nanotechnology

Justus Liebig: 1843 Preparation of silver mirrors

Michael Farady: 1856 Preparation of ultrathin layers

Observation of red „gold solutions“ as by product

History of nanotechnology

Preparation of nanoobjects

Faraday sols – 1864 preparation History of nanotechnology

Preparation of nanoobjects

reduction (III) 0 HAu Cl4 Au Citrate Ascobic acid ~5 nm

Faraday sols – 1864 Nanoparticle preparation 20 nm History of nanotechnology

Analysis of nanoobjects

Scattered

Nanoparticles

Zsigmondy Ultramicroscope – 1900 Single observation History of nanotechnology

Faraday’s „solutions“ are no real solutions (Tyndal Faraday effect)

History of nanotechnology

Physical properties of nanoobjects

Zsigmondy 1905 History of nanotechnology

Physical properties of nanoobjects

Einstein - Smoluchowski – 1905 Diffusion of nanoparticles History of nanotechnology

Physical properties of nanoobjects

Diffusion

Einstein - Smoluchowki – 1905 Diffusion of nanoparticles Making money with nanotechnology

Au 1 Oz : 400 €

Au Sol particles (6 nm) : 25 ml , 0.01 % HAuCl4 : 92 € Au 1 Oz : ...... Polymers and nanotechnology

Macromolecules are Nanoobjects

Nanoobjects are not necessarily Macromolecules

Macromolecules

Small Organic Molecules Metallic Clusters

Carbon Nanostructures (Fullerenes, Carbon Nanotubes)

Preparation of Nanostructures

Top Up

Lithography Self assembly

Down Bottom up

Science Fiction ? Lets build a small world Complex structures of a small world

/ 10 7 / 10 8

Polymers and nanotechnology

Conformation and size of single macromolcules

Freely jointed chain (Frei drehbare Kette):

(Valenzwinkelkette)

(Valenzwinkelkette mit gehinderter Rotation)

Mesophases of amphiphilic molecules

A. Mueller, D. O‘Brien, Chem. Rev. 2002, 102, 727

Colloidal particles and their assembly Colloidosomes

A. D. Dinsmore, et al. Science 298, 1006 (2002) Micro- and nanostructures through lithographic approaches

L. Jay Guo,*,† Xing Cheng,† and Chia-Fu Chou*,‡ NANO LETTERS 2004 Vol. 4, No. 1 69-73 Polymers and nanotechnology Single colloidal objects

Softmatter Hard material

5 nm – 20 nm 1 nm – 100 nm

Polymer Polymer Nanoparticle Carbon rod coil nanotube

Size and shape of objects can change are fixed Biopolymer Nanoobjects

Integration of single molecular motors into man-made microstructures

24.01.11 30 Montemagno et. al., Science 290 (2000) 155 Polymers and nanotechnology

Conformation and size of single macromolcules

End-to-end distance (Fadenendenabstand)

Radius of gyration (Trägheitsabstand)

Persistence length (Persistenzlänge)

Polymers and nanotechnology Assemblies of nanoobjects

Ion channels

Functionallity

Self assembly can change are fixed Polymers in micro- and nanotechnology

What are the technologies used in micro- and nanosciences?

• Structuring technologies • Analytical techniques

What is the biological input to micro- and nanotechnology?

• Biomimetic strategies • Biophysical techniques

What are the visionary goals of nanotechnology ?

What can be the positive and negative input on society ? Micro- and nanostructures through self-assembly

Hui Zhang and Mary J. Wirth* Anal. Chem.2005, 77,1237-1242 Micro- and nanostructures through self-assembly

Micro- and nanostructures through lithographic approaches

L. Jay Guo,*,† Xing Cheng,† and Chia-Fu Chou*,‡ NANO LETTERS 2004 Vol. 4, No. 1 69-73 Micro- and nanostructures through self-assembly

Guillaume Tresset† and Shoji Takeuchi*,‡ Anal. Chem.2005, 77,2795-2801

Cell encapsulation in microdroplets

Mingyan He, J. Scott Edgar, Gavin D. M. Jeffries, Robert M. Lorenz, J. Patrick Shelby, and Daniel T. Chiu* Anal. Chem.2005, 77,1539-1544 Micro- and nanotechnology as multidisciplinary fields

Physics Chemistry

Engineering Molecular- / Cell- sciences Biology

Micro- and nanotechnology as multidisciplinary fields

Physics

Fundamentals for structuring technologies

Short wavelength radiation from synchrotons Micro- and nanotechnology as multidisciplinary fields

Physics

Fundamentals for structuring technologies

Optical tweezers Dip pen lithography Micro- and nanotechnology as multidisciplinary fields

Physics

Understanding physical effects on the meso- and nanoscale

Measuring single molecule mechanical properties Micro- and nanotechnology as multidisciplinary fields

Physics

Single molecule physics

Moving single molecules Micro- and nanotechnology as multidisciplinary fields

Physics

Fundamentals for new analytical techniques

SXM (AFM) SXM (SNOM) Micro- and nanotechnology as multidisciplinary fields

Chemistry

Materials for new structuring technologies

Extreme UV resists for 157 nm irradiation

Micro- and nanotechnology as multidisciplinary fields

Chemistry

Materials for new structuring technologies

Control of mesostructure by polymer design

Micro- and nanotechnology as multidisciplinary fields

Chemistry

Chemical tuning of surfaces

Control of Wettability Spatial control of Reactivity

Micro- and nanotechnology as multidisciplinary fields

Chemistry

Design of complex structures (for new high tech applications)

Micro- and nanotechnology as multidisciplinary fields

Chemistry

Design of complex structures (for new high tech applications)

Photonic crystals and foams Colloidal particles and their assembly Colloidosomes

Schematic illustration of the self-assembly process for colloidosomes. (A) Aqueous solution is added to oil containing colloidal particles. Aqueous droplets are formed by gentle continuous shearing for several seconds. (B) Particles adsorb onto the surface of the droplet to reduce the total surface energy. These particles are subsequently locked together by addition of polycations, by van der Waals forces, or by sintering the particles. (C) The structure is transferred to water by centrifugation. The same approach is used to encapsulate oil droplets with a shell of particles from an exterior water phase. Particles adsorbed because of the large oil-water surface energy, which is substantially larger than the difference between the particle-oil and particle-water surface energies; this differs substantially from previous reports, where colloidal particles were adsorbed electrostatically onto oil droplets, which required prior treatment of the droplet’s surface

A. D. Dinsmore, et al. Science 298, 1006 (2002) Colloidal particles and their assembly Colloidosomes

A. D. Dinsmore, et al. Science 298, 1006 (2002) Micro- and nanotechnology as multidisciplinary fields

Chemistry

Nature as lecturer – Biomimetic approach

Micro- and nanostructures through self-assembly

Diatomes – self assembled complex structures

Micro- and nanotechnology as multidisciplinary fields

Molecular- / Cell- Biology

Nature as lecturer – The cell as microsystem with nanofunctional units

Micro- and nanotechnology as multidisciplinary fields

Molecular- / Cell- Biology

Nature as lecturer – Molecular motors in biology (translation & rotation)

Micro- and nanotechnology as multidisciplinary fields

Engineering sciences

Man-machine interfacing Integrating biological function into microsystems

Neuron attached to a microchip (MPI Martinsried- Munich) Micro- and nanotechnology as multidisciplinary fields

Engineering sciences

Creating new microproduction technology

Micro- and nanotechnology as multidisciplinary fields

Engineering sciences

Creating new microdevice technology

Monolitic fabrication:

Integration of different functional units Without assembly process

Microfluidics

2‘ nd lecture 09.11.2009

Lithographical Methods Physical Principles Technologies Materials

Polymers in micro- and nanotechnology

2d structures 3d structures Lateral structures

DNA Chip Microfluidic channel

2d structures 3d structures Lateral structures D

D

D D: lateral resolution D: lateral resolution H: height

Aspect ratio α

α = H/D

Top down technologies for micro-/nanostructure preparation

100 µm 10 µm 1 µm 100 nm 10 nm 1 nm

Sub-micrometer

Optical Lithography

Softlithography

Ebeam Lithography

AFM based Lithography

Top down technologies for micro-/nanostructure preparation

2d,3d Electronbeam & Optical, X-ray Lithography,

2d,3d Soft-Lithography

2d AFM based Lithography (dip pen, SNOM,..)

Ebeam and optical lithography

Substrate

Resist layer

Irradiation

Resist layer Positive resist Negative resist (becomes soluble upon irradiation) (becomes insoluble upon irradiation)

Pattern transfer

Film formation by spin coating

Substrate

Resist layer

Inhomogeneous thickness of resist layer and time evolution of layer thickness Film formation by spin coating

Process and materials parameter influencing film thickness

• Solution viscosity • Solid content • Angular speed • Spin Time

Wetting of (polymer) solutions on solid substrates

ω ~ 0 deg. Spreading

0 < ω < 90 deg. Wetting

ω > 90 deg. Non-wetting

Wetting and dewetting of thin polymer (liquid films) on solid substrates

Stability of thin films on surfaces

1) Stable film , 2) Unstable film 3) Metastable film Φ effective interface potential

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534 Stability of thin films on surfaces

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534 Stability of thin films on surfaces

h Polymerfilm d SiO Si h: thickness of polymer film d: Thickness of SiO layer

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534 Stability of thin films on surfaces on variable SiO interface

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534 Wetting and partial wetting on surfaces

G. Reiter et. Al. Langmuir 15 (1999) 2551 25.10.2010

Optical lithography

Thick layer resist technology : High aspect ratios

Optical lithography

Thick layer resist technology : High aspect ratios

I(d)

H

I(d) = I * exp- ε * d

Inhomogeneous irradiation of polymer due to strong optical absorption (H > 100 µm)

Optical lithography

Thick layer resist technology : Thick layer resist systems (SU-8)

Optical lithography

Chemically amplified negative resist

T-BOC cleavage

Acid catalyst negative resist

Alkaline development

Optical lithography

Chemically amplified negative resist

T-BOC cleavage

Acid catalyst negative resist

Alkaline development

3‘ rd lecture 25.10.2010

Optical lithography Light sources and structure resolution

Hg KrF ArF F2

365 248 193 157 nm nm nm nm

Optical lithography Lenses for KrF laser sources (248 nm)

Structure resolution <180 nm

Lense Material Calziumfluorid

Optical Transmission high above 170 nm

No birefringence

Optical lithography Lenses for ArF laser sources (198 nm)

Increasing na to ~ 1.3

Structure resolution 80 nm

Optical lithography Resist for 157 nm VUV Lithography

Optical lithography Resist for 157 nm VUV Lithography

Optical lithography Two-photon lithography for complex 3d structures

Optical lithography Two-photon lithography for complex 3d structures

Optical lithography Two-photon lithography for complex 3d structures

Optical lithography Two-photon lithography for complex 3d structures

Optical lithography Quantum dots as 2 photon initiators

2 hν

Cd o ( ) S o o o

N.C. Strandwitz JACS 2008, 130(26), 8280-8288

Optical lithography in aqueous solutions

Jhaveri, et. al. Chem. Mater. 2009, 21 (10), 2004 ff. Optical lithography 2 Photon photoabsorption

Optical lithography of complex 3d microstructures Multiphoton fabrication of chemically responsive protein hydrogels for microactuation Bryan Kaehr and Jason B. Shear , PNAS 105 (2008) , 8850 ff.

Dynamic cell enclosures

Optical lithography of complex 3d microstructures Multiphoton fabrication of chemically responsive protein hydrogels Bryan Kaehr et. al. , PNAS 101 (2004) , 16104 ff.

Guiding neurons by crosslinked BSA

Optical lithography in aqueous solutions

Jhaveri, et. al. Chem. Mater. 2009, 21 (10), 2004 ff. Maskless optical lithography - A simple setup

100 µm lines 500 µm pitch

Musgraves et. al. Am. J. Phys. 2005, 73 (10), 980 ff. Maskless optical lithography – 3d stereolithography

Sun et. al. Sensors and Actuators A 121, 2005, 113 ff. Maskless optical lithography – 3d stereolithography

Choi et. al. J. Mat. Process. Tech. 209, 2009, 5494 ff. Maskless optical lithography – 3d stereolithography

Kidney scaffold

Choi et. al. J. Mat. Process. Tech. 209, 2009, 5494 ff. DMD chip element

Monk et. al. Microelectronic Eng., 27, 1995, 489 ff. Optical lithography in microfluidic systems

Lee et. al. Lab Chip 9, 2009, 1670 ff. Optical lithography in microfluidic systems

Chung et. al. Nature Materials 7, 2008, 581 ff. Optical lithography in µ-fluidic systems – Particle assembly

Chung et. al. Nature Materials 7, 2008, 581 ff. Multi-LED array

Grossmann et. al. J. Neural Eng., 11, 2010, 016004 ff. Multi-LED array

Local stimulation of nerve cells

Grossmann et. al. J. Neural Eng., 11, 2010, 016004 ff. Ebeam lithography Penetration depth of electrons with different energies in different materials

Ebeam lithography Penetration depth of electrons with different energies

Ebeam lithography Resolution down to 8 nm (A. Tilke LMU München) – Resist: Calixarene

Ebeam lithography Chemical structure of Calixarene

Ebeam lithography SCALPEL Technique

Ebeam lithography SCALPEL Technique

Synchroton lithography / Synchroton X-rays

Synchroton lithography X-rays

Synchroton lithography / LIGA X-rays

Synchroton lithography / Mask production X-rays

Polymer embossing

Embossing machine Process steps (Jenoptik) Cycle time ~ 7 minutes

Heating of substrate and tools above Tg

Application of pressure (~ kN)

Cooling of substrate and embossing tool below Tg

Removal of tool

Polymer embossing

Silicon master embossing tool Polymer replica made by embossing

Polymer microysystems

Lensarrays Beam splitter

Microdropdeposition

Polydimethylsiloxane (PDMS) - The material

- Me : - CH3

Pt Curing

Crosslinking Linear flexible polymer Flexible crosslinked (liquid @RT) Rubber ( @RT)

Polydimethylsiloxane (PDMS) - The material

Chemical crosslinking by hydrosilylation

Schmid,H. Macromolecules 33, 3042 (2000) Polydimethylsiloxane (PDMS) - The material

Chemical modification by hydrosilylation

(-O-CH2-CH2)- EO

Hydrophilic

Polydimethylsiloxane (PDMS) - The material

Jessamine Ng Lee, Cheolmin Park,† and George M. Whitesides*

Anal. Chem.2003, 75,6544-6554 Polydimethylsiloxane (PDMS) - The material T.R.E. Simpsona, Z. Tabatabaianb, C. Jeynesb, B. Parbhooc, and J.L. Keddiea*

Polydimethylsiloxane (PDMS) - The material Hydrophilization by surface plasma treatment

O. Steinbock, Langmuir 19, 8117 (2003)

Liquid filling of a capillary by Surface interactions

S. Stark,Microelectronic Eng. 67/68, 229 (2003)

Liquid filling of a capillary by Surface interactions

S. Stark,Microelectronic Eng. 67/68, 229 (2003)

Polydimethylsiloxane (PDMS) - The material Hydrophilization by surface plasma treatment

O. Steinbock, Langmuir 19, 8117 (2003)

Polydimethylsiloxane (PDMS) - The material Hydrophilization by surface plasma treatment

Hydrophobic recovery measured by surcface force AFM

M. Meincken, T.A. Berhane, P.E. Mallon, Polymer 46 (2005) 203–208 Polydimethylsiloxane (PDMS) - The material

Compression mold 2 N/mm2

Compression mold 9.7 N/mm2 Schmid,H. Macromolecules 33, 3042 (2000) Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

TIRF measurement of particle velocity near surfaces

K.Breuer 2003 ASME International Mechanical Engineering Congress & Exposition Washington, D.C., November 16-21, 2003

TIRF measurement of particle velocity near surfaces

K.Breuer 2003 ASME International Mechanical Engineering Congress & Exposition Washington, D.C., November 16-21, 2003

Unconventional lithographic techniques

Unconventional lithographic techniques

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ J. AM. CHEM. SOC. 2004, 126, 7744-7745 Softlithographic techniques

UV induced radical polymerisation of polyurethaneacrylates

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ J. AM. CHEM. SOC. 2004, 126, 7744-7745 Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ J. AM. CHEM. SOC. 2004, 126, 7744-7745 Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ J. AM. CHEM. SOC. 2004, 126, 7744-7745 Rigiflex lithography

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ J. AM. CHEM. SOC. 2004, 126, 7744-7745 Rigiflex lithography

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡ J. AM. CHEM. SOC. 2004, 126, 7744-7745 Softlithographic techniques

Zentel , Advanced Materials 14, 588 (2002)

Softlithographic techniques Polymerisable conducting polymer

Zentel , Advanced Materials 14, 588 (2002)

PDMS based complex microfluidic systems

Multilayer µ-fluidic systems a) Fluidic transport layer b) Control layer

S. Quake,Science 298, 580 (2002)

Complex shaped 3d nanoparticles

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimone Chem. Soc. Rev., 2006, 35, 1095–1104 S.E.A. Gratton et al. / Journal of Controlled Release 121 (2007) 10–18 Complex shaped 3d nanoparticles

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimone Chem. Soc. Rev., 2006, 35, 1095–1104 S.E.A. Gratton et al. / Journal of Controlled Release 121 (2007) 10–18 Complex shaped 3d nanoparticles

Complex shaped 3d nanoparticles

Jason P. Rolland,† Benjamin W. Maynor,† Larken E. Euliss,† Ansley E. Exner,† Ginger M. Denison,† and Joseph M. DeSimone J. AM. CHEM. SOC. 9 VOL. 127, NO. 28, 2005 10099 Complex shaped 3d nanoparticles

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimone Chem. Soc. Rev., 2006, 35, 1095–1104

Polymers in micro- and nanotechnology

2d structures 3d structures Lateral structures

DNA Chip Microfluidic channel

„Surface Engineering“

Au, Cu, Ag HS-R

Al2O3 (OH)3-P-O-R

SiO 2 X3Si-O-R

Tailored Surface Chemistry „Surface Engineering“

Surface Polymerized Polypeptides

Poly-γ-benzylglutamate

Orientational Change of α-Helix by solvent Resulting change in layer thickness Poly-γ-benzylglutamate

Orientational Change of α-Helix by solvent Resulting change in layer thickness

„Surface Engineering“

Surface Patterning Surface patterning

Microcontact Printing (Whitesides) 1 µm Electron Beam Lithography of Self-Assembled Monolayers (Craighead) Dip-Pen Lithography 1 nm of Self-Assembled Monolayers (C.A. Mirkin)

Micro-contact printing

Polymer stamp (PDMS)

Siliconmicrostructure or PMMA resist

Micro-contact printing

Polymer stamp (PDMS)

„Ink“

Micro-contact printing

Polymer stamp (PDMS)

„Ink“

Micro-contact printing of solutions

M. Wang, H.-G. Braun, T. Kratzmüller, E. Meyer, Adv. Mater. 13, 1312 (2000) Micro-contact printing of solutions

M. Wang, H.-G. Braun, T. Kratzmüller, E. Meyer, Adv. Mater. 13, 1312 (2000) Micro-contact printing of dispersions

M.M. Sung,Lee B. Chem. Mater. 2007 Micro-contact printing of dispersions

Colloidal particles on the mask M.M. Sung,Lee B. Chem. Mater. 2007 Micro-contact printing of dispersions

Colloidal particles transfered to a surface by micro-contact printing (The particles are chemically attached to the surface) M.M. Sung,Lee B. Chem. Mater. 2007