Polymers and Biopolymers in Micro- and Nanotechnology
Total Page:16
File Type:pdf, Size:1020Kb
Physics Chemistry Polymers and biopolymers in Polymerscience Nanoscience micro- and nanotechnology Life Sciences Engineering Sciences Biomimetisches Optisch Lithographische Strukturdesign Strukturierungstechniken Selbstorganisation Motivation Softlithographie Mikrodisperse Surface Design Strukturelemente Polymers and biopolymers in micro- and nanotechnology What are micro- and nanotechnology about ? • Majour goals • Representative examples from microtechnology • Representative examples from nanotechnology What are the materials used in micro- and nanotechnology? • Silicon, metals, semiconductors and inorganics • Polymers, organic materials Polymers and biopolymers in micro- and nanotechnology What are the technologies used in micro- and nanosciences? • Structuring technologies • Analytical techniques • Self assembly What is the biological input to micro- and nanotechnology? • Biomimetic strategies • Biophysical techniques What are the visionary goals of nanotechnology ? Goals of nanotechnology Nanotechnology focuses on • preparation • analysis • understanding of physical properties and • technological application of nano- and mesosized objects Nanoobjects Layers Rods Particles z y x x y y 1-d 2-d 3-d < 100 nm History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications of nanoobjects Colloidal colours in glases –Optical properties of nanoparticles History of nanotechnology Alchemist Kunckel Johann Kunckel, der am sächsischen Hof diente und sich in der europäischen Glaskunst auskannte, wurde vom Großen Kurfürsten um 1678 nach Brandenburg gerufen. Der wollte nicht nur die Folgen des Dreißigjährigen Krieges mindern, sondern auch günstig zu hochwertigem Glas kommen. Die wichtigsten Rohstoffe wie Holz und Quarzsande waren in der Mark reichlich vorhanden. Unter dem Vorwand des ungestörten Experimentierens wurde Kunckel auf der heutigen Pfaueninsel isoliert. Nicht zuletzt durch seine Arbeit an der Verbesserung des Rubinglases erlangten seine Produkte den Status luxuriöser Exportartikel. 1682 History of nanotechnology Alchemist Kunckel Da ihm aber bald auch dort das Gehalt nicht mehr gezahlt wurde, geriet er in wirtschaftliche Schwierigkeiten und er beschwerte sich in Dresden. Die Antwort der kurfürstlichen Minister lautete: “Kann Kunckel Gold machen, so bedarf er kein Geld, kann er solches aber nicht, warum solle man ihm Geld geben?” 1682 History of nanotechnology Die herrliche rote Farbe der kolloiden Goldlösung hat die Technik schon seit vielen Jahrhunderten im Goldrubinglas benutzt, das, wie Zsigmondy und Siedentopf mit Hilfe des Ultramikroskops bewiesen haben, feste Teilchen metallischen Goldes als färbende Substanz enthält (im Ultramikroskop erscheinen diese Goldteilchen als grünglänzende Scheibchen). Man stellt das echte Rubinglas her, indem man zur Glasmasse Chlorgold zufügt. Bei rascherem Abkühlen erhalt man ein farb- loses Glas; erhitzt man von neuem, bis das Glas erweicht, so läuft es plötzlich prachtvoll rubinrot an. Schlechtes Rubinglas dagegen wird beim Wiedererhitzen blau, violett und rosa; das Ultramikroskop zeigt hier viel hellere und viel weiter voneinander entfernte Teilchen, die im blauen Glase kupferrot, im violetten Glase gelb und dort, wo das Glas rosa ist, grün glänzen. Die Bedeutung der Kolloide für die Technik K. Arndt in Kolloid Zeitschrift S. 1 (1909) History of nanotechnology Justus Liebig: 1843 Preparation of silver mirrors Michael Farady: 1856 Preparation of ultrathin layers Observation of red „gold solutions“ as by product History of nanotechnology Preparation of nanoobjects Faraday sols – 1864 Nanoparticle preparation History of nanotechnology Preparation of nanoobjects reduction (III) 0 HAu Cl4 Au Citrate Ascobic acid ~5 nm Faraday sols – 1864 Nanoparticle preparation 20 nm History of nanotechnology Analysis of nanoobjects Scattered light Nanoparticles Zsigmondy Ultramicroscope – 1900 Single particle observation History of nanotechnology Faraday’s „solutions“ are no real solutions (Tyndal Faraday effect) History of nanotechnology Physical properties of nanoobjects Zsigmondy 1905 History of nanotechnology Physical properties of nanoobjects Einstein - Smoluchowski – 1905 Diffusion of nanoparticles History of nanotechnology Physical properties of nanoobjects Diffusion Einstein - Smoluchowki – 1905 Diffusion of nanoparticles Making money with nanotechnology Au 1 Oz : 400 € Au Sol particles (6 nm) : 25 ml , 0.01 % HAuCl4 : 92 € Au 1 Oz : ...... Polymers and nanotechnology Macromolecules are Nanoobjects Nanoobjects are not necessarily Macromolecules Macromolecules Small Organic Molecules Metallic Clusters Carbon Nanostructures (Fullerenes, Carbon Nanotubes) Preparation of Nanostructures Top Up Lithography Self assembly Down Bottom up Science Fiction ? Lets build a small world Complex structures of a small world / 10 7 / 10 8 Polymers and nanotechnology Conformation and size of single macromolcules Freely jointed chain (Frei drehbare Kette): (Valenzwinkelkette) (Valenzwinkelkette mit gehinderter Rotation) Mesophases of amphiphilic molecules A. Mueller, D. O‘Brien, Chem. Rev. 2002, 102, 727 Colloidal particles and their assembly Colloidosomes A. D. Dinsmore, et al. Science 298, 1006 (2002) Micro- and nanostructures through lithographic approaches L. Jay Guo,*,† Xing Cheng,† and Chia-Fu Chou*,‡ NANO LETTERS 2004 Vol. 4, No. 1 69-73 Polymers and nanotechnology Single colloidal objects Softmatter Hard material 5 nm – 20 nm 1 nm – 100 nm Polymer Polymer Nanoparticle Carbon rod coil nanotube Size and shape of objects can change are fixed Biopolymer Nanoobjects Integration of single molecular motors into man-made microstructures 24.01.11 30 Montemagno et. al., Science 290 (2000) 155 Polymers and nanotechnology Conformation and size of single macromolcules End-to-end distance (Fadenendenabstand) Radius of gyration (Trägheitsabstand) Persistence length (Persistenzlänge) Polymers and nanotechnology Assemblies of nanoobjects Ion channels Functionallity Self assembly can change are fixed Polymers in micro- and nanotechnology What are the technologies used in micro- and nanosciences? • Structuring technologies • Analytical techniques What is the biological input to micro- and nanotechnology? • Biomimetic strategies • Biophysical techniques What are the visionary goals of nanotechnology ? What can be the positive and negative input on society ? Micro- and nanostructures through self-assembly Hui Zhang and Mary J. Wirth* Anal. Chem.2005, 77,1237-1242 Micro- and nanostructures through self-assembly Micro- and nanostructures through lithographic approaches L. Jay Guo,*,† Xing Cheng,† and Chia-Fu Chou*,‡ NANO LETTERS 2004 Vol. 4, No. 1 69-73 Micro- and nanostructures through self-assembly Guillaume Tresset† and Shoji Takeuchi*,‡ Anal. Chem.2005, 77,2795-2801 Cell encapsulation in microdroplets Mingyan He, J. Scott Edgar, Gavin D. M. Jeffries, Robert M. Lorenz, J. Patrick Shelby, and Daniel T. Chiu* Anal. Chem.2005, 77,1539-1544 Micro- and nanotechnology as multidisciplinary fields Physics Chemistry Engineering Molecular- / Cell- sciences Biology Micro- and nanotechnology as multidisciplinary fields Physics Fundamentals for structuring technologies Short wavelength radiation from synchrotons Micro- and nanotechnology as multidisciplinary fields Physics Fundamentals for structuring technologies Optical tweezers Dip pen lithography Micro- and nanotechnology as multidisciplinary fields Physics Understanding physical effects on the meso- and nanoscale Measuring single molecule mechanical properties Micro- and nanotechnology as multidisciplinary fields Physics Single molecule physics Moving single molecules Micro- and nanotechnology as multidisciplinary fields Physics Fundamentals for new analytical techniques SXM (AFM) SXM (SNOM) Micro- and nanotechnology as multidisciplinary fields Chemistry Materials for new structuring technologies Extreme UV resists for 157 nm irradiation Micro- and nanotechnology as multidisciplinary fields Chemistry Materials for new structuring technologies Control of mesostructure by polymer design Micro- and nanotechnology as multidisciplinary fields Chemistry Chemical tuning of surfaces Control of Wettability Spatial control of Reactivity Micro- and nanotechnology as multidisciplinary fields Chemistry Design of complex structures (for new high tech applications) Micro- and nanotechnology as multidisciplinary fields Chemistry Design of complex structures (for new high tech applications) Photonic crystals and foams Colloidal particles and their assembly Colloidosomes Schematic illustration of the self-assembly process for colloidosomes. (A) Aqueous solution is added to oil containing colloidal particles. Aqueous droplets are formed by gentle continuous shearing for several seconds. (B) Particles adsorb onto the surface of the droplet to reduce the total surface energy. These particles are subsequently locked together by addition of polycations, by van der Waals forces, or by sintering the particles. (C) The structure is transferred to water by centrifugation. The same approach is used to encapsulate oil droplets with a shell of particles from an exterior water phase. Particles adsorbed because of the large oil-water surface energy, which is substantially larger than the difference between the particle-oil and particle-water surface energies; this differs substantially from previous reports, where colloidal particles were adsorbed electrostatically onto oil droplets, which required prior treatment of the droplet’s surface A. D. Dinsmore, et al. Science