Glacier Meltwater Contributions and Glaciometeorological Regime of the Illecillewaet River Basin, British Columbia, Canada
Total Page:16
File Type:pdf, Size:1020Kb
Glacier Meltwater Contributions and Glaciometeorological Regime of the Illecillewaet River Basin, British Columbia, Canada J.M.R. Hirose* and S.J. Marshall Department of Geography, University of Calgary, Calgary, Alberta, Canada [Original manuscript received 3 March 2012; accepted 22 February 2013] ABSTRACT This study characterizes the meteorological parameters influencing glacier runoff and quantifies recent glacier contributions to streamflow in the Illecillewaet River basin, British Columbia. The Illecillewaet is a glacierized catchment that feeds the Columbia River, with terrain, glacial cover, and topographic relief that are typical of Columbia River headwaters basins in southwestern Canada. Meteorological and mass balance data collected on Illecillewaet Glacier are used to develop and constrain a distributed model for glacier melt, based on temperature and absorbed solar radiation. The melt model is applied to all of the glaciers in the Illecillewaet River basin for the summers of 2009 to 2011. Modelled glacier runoff for the three years has an average value of 112 ± 12 × 106 m3, approximately 10% of Illecillewaet River yields for 2009 to 2011. Glaciers contributed 25% to August flows for the three years. On average, 66% of modelled glacial discharge is derived from the seasonal snowpack, with the remaining 34% resulting from the melting of glacier ice and firn. For the lowest flow year in the basin, 2009, snow and ice melt from glaciers in the basin contributed 14% and 33%, respectively; 81% of the August glacier runoff is derived from glacier storage (ice and firn). Climate sensitivity studies for Illecillewaet Glacier indicate that the glacier mass balance is strongly influenced by summer temperature, with a net balance change of −0.6 metres of water equivalent (m w.e.) under a 1°C warming. A 30% increase in winter precipitation is needed to offset this. Our values are initial estimates, and long-term monitoring is essential to characterize glacier and climate variability in the region better, to refine estimates of glacier runoff, and to quantify the sensitivity of runoff to glacier retreat. RÉSUMÉ [Traduit par la rédaction] La présente étude caractérise les paramètres météorologiques qui influencent le ruissellement des glaciers et quantifie les contributions récentes des glaciers à l’écoulement fluvial dans le bassin de la rivière Illecillewaet, en Colombie-Britannique. L’Illecillewaet est un bassin hydrographique englacé qui alimente le fleuve Columbia, avec un terrain, une couverture de glace et des éléments topographiques caractéristiques des bassins du cours supérieur du fleuve Columbia dans le sud-ouest du Canada. Nous utilisons les données météorologiques et de bilan massique recueillies sur le glacier Illecillewaet pour mettre au point et contraindre un modèle distribué de fonte des glaciers, basé sur la température et le rayonnement solaire absorbé. Le modèle de fonte est appliqué à tous les glaciers situés dans le bassin de la rivière Illecillewaet pour les étés de 2009 à 2011. Le ruissellement modélisé des glaciers pour les trois années a une valeur moyenne de 112 ± 12 × 106 m3, approximativement 10% de l’écoulement de la rivière Illecillewaet pour 2009 à 2011. Les glaciers ont Downloaded by [University of Victoria] at 10:12 07 May 2013 contribué pour 25% de l’écoulement en août les trois années. En moyenne, 66% du ruissellement modélisé des glaciers provient de l’accumulation saisonnière de neige, les 34% restant provenant de la fonte de glace de glacier et de névé. Pour l’année du plus faible écoulement fluvial dans le bassin, 2009, la fonte de neige et de glace de glacier dans le bassin a contribué pour 14% et 33%, respectivement; 81% du ruissellement des glaciers en août est dérivé du stockage des glaciers (glace et névé). Des études de sensibilité climatique pour le glacier Illecillewaet indiquent que le bilan massique du glacier est fortement influencé par la température en été, avec une variation nette de −0,6 mètre d’équivalent en eau dans le bilan pour un réchauffement de 1°C. Un accroissement de 30% dans les précipitations hivernales est nécessaire pour annuler cet effet. Nos valeurs sont des estimations préliminaires, et une surveillance à long terme est essentielle pour mieux caractériser la variabilité des glaciers et du climat dans cette région, pour raffiner les estimations de ruissellement des glaciers et pour quantifier la sensibilité du ruissellement au retrait des glaciers. KEYWORDS glacier; mass balance; glacier melt; glacier runoff; headwaters; Illecillewaet; Columbia River basin *Corresponding author’s email: [email protected] ATMOSPHERE-OCEAN iFirst article, 2013, 1–20 http://dx.doi.org/10.1080/07055900.2013.791614 Canadian Meteorological and Oceanographic Society 2 / J. M. R. Hirose and S. J. Marshall 1 Introduction observations and glacier mass balance models. Separation is The Columbia River basin (CRB) is the sixth largest river basin important because runoff from the seasonal snowpack is in North America, with a total basin area of 671,300 km2. intrinsically renewable and can be expected to persist, albeit About 15% of the basin lies within Canada, including numer- reduced, as glaciers recede from the landscape. Meltwater ous high-elevation catchments. Approximately 1760 km2 from glacier ice and firn, on the other hand, taps into a reser- (1.7%) of the Canadian CRB (CCRB) is glacierized, and its voir that is diminishing with time. In this paper we define upper headwaters receive high annual precipitation (e.g., glacier runoff to include all the meltwater that issues from gla- Cohen, Miller, Hamlet, & Avis, 2000; Hamlet, Mote, Clark, ciers, including snow, firn, and ice, but we report the runoff & Lettenmaier, 2005; Kite, 1997), with much of this accumu- from seasonal snow and that drawn from stored firn and ice lating in the mountain snowpack. An estimated 30–40% of separately. annual discharge in the Columbia River, as measured at It is unclear whether glacier contributions to streamflow The Dalles, Oregon, is derived from the Canadian portion of measured or modelled in other parts of western Canada are the basin (Cohen et al., 2000; FCRPS, 2001; Hamlet & representative of the CCRB. The eastern slopes of the Lettenmaier, 1999). Glacier contributions to annual discharge Rocky Mountains are in a more continental climate than are are unknown in the CRB. the Columbia Mountains, with relatively sparse glacier Glaciers are natural freshwater reservoirs on seasonal to cover. Rango, Martinec, and Roberts (2008) examine glacier centennial time scales. The retreat and thinning of glaciers contributions to runoff in the Illecillewaet River basin, but affects both water availability and water temperature in gla- with limited observational constraints and with a simplified cierized catchments (Moore, 2006). Much of the long-term treatment of glacier mass balance and melt processes. Jost storage (glacier ice) gets depleted in late summer and early et al. (2012) and Bürger, Schulla, and Werner (2011) apply fall (Fountain & Tangborn, 1985), and ice-melt runoff helps hydrological models to nearby basins of the CCRB and to maintain streamflows after the seasonal snow has melted provide preliminary assessments of the importance and (e.g., Déry et al., 2009; Huss, Farinotti, Bauder, & Funk, impact of glacier runoff, but these models treat the glaciers 2008; Moore & Demuth, 2001). Glacier melt also has a simply and also lack direct observations to constrain mass cooling effect on streams because of the colder meltwater balance gradients and high-elevation meteorological and higher flows; this reduces the sensitivity to energy conditions in the region. inputs and maintains habitat for cold-water species in down- Here we present observational and modelling results of stream rivers (Moore, 2006). There has been limited glaciolo- glacier meteorological conditions, mass balance, and runoff gical research in the CCRB, but modelling efforts in the Mica in the relatively undisturbed Illecillewaet River sub-basin sub-basin indicate that meltwater from glacier ice contributes (IRB), a high-elevation headwater catchment of the CCRB. up to 25–35% of streamflow in August and September (Jost, Our study has several objectives: i) to report direct mass Moore, Menounos, & Wheate, 2012). This represents a vital balance and meteorological observations from field studies freshwater resource to the Columbia River system, supporting at Illecillewaet Glacier; ii) to constrain mass balance gradients municipalities, industry, hydroelectricity generation, irriga- and high-elevation meteorological conditions needed for gla- tion, and ecosystems. ciological and hydrological models; iii) to develop and vali- Glacier contributions to streamflow have been assessed in date a distributed melt model for Illecillewaet Glacier mass the southern Coast Mountains (e.g., Moore, 1993; Moore & balance and meltwater runoff; iv) to explore the uncertainties Demuth, 2001) and on the eastern slopes of the Canadian and climate sensitivities of the model; and v) to estimate and Downloaded by [University of Victoria] at 10:12 07 May 2013 Rocky Mountains (Comeau, Pietroniro, & Demuth, 2009; partition meltwater runoff contributions to Illecillewaet Demuth et al., 2008; Hopkinson & Young, 1998; Marshall River from glacier snow and ice. This preliminary study pro- et al., 2011). Hopkinson and Young (1998) conclude that vides a snapshot of recent glacier-melt contributions in a head- ice-melt from glaciers contributed 1.8% of the average